186,105 research outputs found

    Beyond representations: towards an action-centric perspective on tangible interaction

    Get PDF
    In the light of theoretical as well as concrete technical development, we discuss a conceptual shift from an information-centric to an action-centric perspective on tangible interactive technology. We explicitly emphasise the qualities of shareable use, and the importance of designing tangibles that allow for meaningful manipulation and control of the digital material. This involves a broadened focus from studying properties of the interface, to instead aim for qualities of the activity of using a system, a general tendency towards designing for social and sharable use settings and an increased openness towards multiple and subjective interpretations. An effect of this is that tangibles are not designed as representations of data, but as resources for action. We discuss four ways that tangible artefacts work as resources for action: (1) for physical manipulation; (2) for referential, social and contextually oriented action; (3) for perception and sensory experience; (4) for digitally mediated action

    Improving Usability of Interactive Graphics Specification and Implementation with Picking Views and Inverse Transformations

    Get PDF
    Specifying and programming graphical interactions are difficult tasks, notably because designers have difficulties to express the dynamics of the interaction. This paper shows how the MDPC architecture improves the usability of the specification and the implementation of graphical interaction. The architecture is based on the use of picking views and inverse transforms from the graphics to the data. With three examples of graphical interaction, we show how to express them with the architecture, how to implement them, and how this improves programming usability. Moreover, we show that it enables implementing graphical interaction without a scene graph. This kind of code prevents from errors due to cache consistency management

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this ïŹeld. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Exploring individual user differences in the 2D/3D interaction with medical image data

    Get PDF
    User-centered design is often performed without regard to individual user differences. In this paper, we report results of an empirical study aimed to evaluate whether computer experience and demographic user characteristics would have an effect on the way people interact with the visualized medical data in a 3D virtual environment using 2D and 3D input devices. We analyzed the interaction through performance data, questionnaires and observations. The results suggest that differences in gender, age and game experience have an effect on people’s behavior and task performance, as well as on subjective\ud user preferences

    Interactive Chemical Reactivity Exploration

    Full text link
    Elucidating chemical reactivity in complex molecular assemblies of a few hundred atoms is, despite the remarkable progress in quantum chemistry, still a major challenge. Black-box search methods to find intermediates and transition-state structures might fail in such situations because of the high-dimensionality of the potential energy surface. Here, we propose the concept of interactive chemical reactivity exploration to effectively introduce the chemist's intuition into the search process. We employ a haptic pointer device with force-feedback to allow the operator the direct manipulation of structures in three dimensions along with simultaneous perception of the quantum mechanical response upon structure modification as forces. We elaborate on the details of how such an interactive exploration should proceed and which technical difficulties need to be overcome. All reactivity-exploration concepts developed for this purpose have been implemented in the Samson programming environment.Comment: 36 pages, 14 figure
    • 

    corecore