298,108 research outputs found

    Lime: Data Lineage in the Malicious Environment

    Full text link
    Intentional or unintentional leakage of confidential data is undoubtedly one of the most severe security threats that organizations face in the digital era. The threat now extends to our personal lives: a plethora of personal information is available to social networks and smartphone providers and is indirectly transferred to untrustworthy third party and fourth party applications. In this work, we present a generic data lineage framework LIME for data flow across multiple entities that take two characteristic, principal roles (i.e., owner and consumer). We define the exact security guarantees required by such a data lineage mechanism toward identification of a guilty entity, and identify the simplifying non repudiation and honesty assumptions. We then develop and analyze a novel accountable data transfer protocol between two entities within a malicious environment by building upon oblivious transfer, robust watermarking, and signature primitives. Finally, we perform an experimental evaluation to demonstrate the practicality of our protocol

    Using schema transformation pathways for data lineage tracing

    Get PDF
    With the increasing amount and diversity of information available on the Internet, there has been a huge growth in information systems that need to integrate data from distributed, heterogeneous data sources. Tracing the lineage of the integrated data is one of the problems being addressed in data warehousing research. This paper presents a data lineage tracing approach based on schema transformation pathways. Our approach is not limited to one specific data model or query language, and would be useful in any data transformation/integration framework based on sequences of primitive schema transformations

    Immunoglobulin variable-region gene mutational lineage tree analysis: application to autoimmune diseases

    Get PDF
    Lineage trees have frequently been drawn to illustrate diversification, via somatic hypermutation (SHM), of immunoglobulin variable-region (IGV) genes. In order to extract more information from IGV sequences, we developed a novel mathematical method for analyzing the graphical properties of IgV gene lineage trees, allowing quantification of the differences between the dynamics of SHM and antigen-driven selection in different lymphoid tissues, species, and disease situations. Here, we investigated trees generated from published IGV sequence data from B cell clones participating in autoimmune responses in patients with Myasthenia Gravis (MG), Rheumatoid Arthritis (RA), and Sjögren's Syndrome (SS). At present, as no standards exist for cell sampling and sequence extraction methods, data obtained by different research groups from two studies of the same disease often vary considerably. Nevertheless, based on comparisons of data groups within individual studies, we show here that lineage trees from different individual patients are often similar and can be grouped together, as can trees from two different tissues in the same patient, and even from IgG- and IgA-expressing B cell clones. Additionally, lineage trees from most studies reflect the chronic character of autoimmune diseases

    Asymmetry tests for Bifurcating Auto-Regressive Processes with missing data

    Full text link
    We present symmetry tests for bifurcating autoregressive processes (BAR) when some data are missing. BAR processes typically model cell division data. Each cell can be of one of two types \emph{odd} or \emph{even}. The goal of this paper is to study the possible asymmetry between odd and even cells in a single observed lineage. We first derive asymmetry tests for the lineage itself, modeled by a two-type Galton-Watson process, and then derive tests for the observed BAR process. We present applications on both simulated and real data

    Nfix expression critically modulates early B lymphopoiesis and myelopoiesis

    Get PDF
    The commitment of stem and progenitor cells toward specific hematopoietic lineages is tightly controlled by a number of transcription factors that regulate differentiation programs via the expression of lineage restricting genes. Nuclear factor one (NFI) transcription factors are important in regulating hematopoiesis and here we report an important physiological role of NFIX in B- and myeloid lineage commitment and differentiation. We demonstrate that NFIX acts as a regulator of lineage specification in the haematopoietic system and the expression of Nfix was transcriptionally downregulated as B cells commit and differentiate, whilst maintained in myeloid progenitor cells. Ectopic Nfix expression in vivo blocked early B cell development stage, coincident with the stage of its downregulation. Furthermore, loss of Nfix resulted in the perturbation of myeloid and lymphoid cell differentiation, and a skewing of gene expression involved in lineage fate determination. Nfix was able to promote myeloid differentiation of total bone marrow cells under B cell specific culture conditions but not when expressed in the hematopoietic stem cell (HSPC), consistent with its role in HSPC survival. The lineage choice determined by Nfix correlated with transcriptional changes in a number of genes, such as E2A, C/EBP, and Id genes. These data highlight a novel and critical role for NFIX transcription factor in hematopoiesis and in lineage specification

    Lineage specific recombination rates and microevolution in Listeria monocytogenes

    Get PDF
    Background: The bacterium Listeria monocytogenes is a saprotroph as well as an opportunistic human foodborne pathogen, which has previously been shown to consist of at least two widespread lineages (termed lineages I and II) and an uncommon lineage (lineage III). While some L. monocytogenes strains show evidence for considerable diversification by homologous recombination, our understanding of the contribution of recombination to L. monocytogenes evolution is still limited. We therefore used STRUCTURE and ClonalFrame, two programs that model the effect of recombination, to make inferences about the population structure and different aspects of the recombination process in L. monocytogenes. Analyses were performed using sequences for seven loci (including the house-keeping genes gap, prs, purM and ribC, the stress response gene sigB, and the virulence genes actA and inlA) for 195 L. monocytogenes isolates. Results: Sequence analyses with ClonalFrame and the Sawyer's test showed that recombination is more prevalent in lineage II than lineage I and is most frequent in two house-keeping genes (ribC and purM) and the two virulence genes (actA and inlA). The relative occurrence of recombination versus point mutation is about six times higher in lineage II than in lineage I, which causes a higher genetic variability in lineage II. Unlike lineage I, lineage II represents a genetically heterogeneous population with a relatively high proportion (30% average) of genetic material imported from external sources. Phylograms, constructed with correcting for recombination, as well as Tajima's D data suggest that both lineages I and II have suffered a population bottleneck. Conclusion: Our study shows that evolutionary lineages within a single bacterial species can differ considerably in the relative contributions of recombination to genetic diversification. Accounting for recombination in phylogenetic studies is critical, and new evolutionary models that account for the possibility of changes in the rate of recombination would be required. While previous studies suggested that only L. monocytogenes lineage I has experienced a recent bottleneck, our analyses clearly show that lineage II experienced a bottleneck at about the same time, which was subsequently obscured by abundant homologous recombination after the lineage II bottleneck. While lineage I and lineage II should be considered separate species from an evolutionary viewpoint, maintaining single species name may be warranted since both lineages cause the same type of human disease

    Gene loss and lineage specific restriction-modification systems associated with niche differentiation in the Campylobacter jejuni Sequence Type 403 clonal complex

    Get PDF
    Campylobacter jejuni is a highly diverse species of bacteria commonly associated with infectious intestinal disease of humans and zoonotic carriage in poultry, cattle, pigs, and other animals. The species contains a large number of distinct clonal complexes that vary from host generalist lineages commonly found in poultry, livestock, and human disease cases to host-adapted specialized lineages primarily associated with livestock or poultry. Here, we present novel data on the ST403 clonal complex of C. jejuni, a lineage that has not been reported in avian hosts. Our data show that the lineage exhibits a distinctive pattern of intralineage recombination that is accompanied by the presence of lineage-specific restriction-modification systems. Furthermore, we show that the ST403 complex has undergone gene decay at a number of loci. Our data provide a putative link between the lack of association with avian hosts of C. jejuni ST403 and both gene gain and gene loss through nonsense mutations in coding sequences of genes, resulting in pseudogene formation
    corecore