1,341 research outputs found

    Pattern mining under different conditions

    Get PDF
    New requirements and demands on pattern mining arise in modern applications, which cannot be fulfilled using conventional methods. For example, in scientific research, scientists are more interested in unknown knowledge, which usually hides in significant but not frequent patterns. However, existing itemset mining algorithms are designed for very frequent patterns. Furthermore, scientists need to repeat an experiment many times to ensure reproducibility. A series of datasets are generated at once, waiting for clustering, which can contain an unknown number of clusters with various densities and shapes. Using existing clustering algorithms is time-consuming because parameter tuning is necessary for each dataset. Many scientific datasets are extremely noisy. They contain considerably more noises than in-cluster data points. Most existing clustering algorithms can only handle noises up to a moderate level. Temporal pattern mining is also important in scientific research. Existing temporal pattern mining algorithms only consider pointbased events. However, most activities in the real-world are interval-based with a starting and an ending timestamp. This thesis developed novel pattern mining algorithms for various data mining tasks under different conditions. The first part of this thesis investigates the problem of mining less frequent itemsets in transactional datasets. In contrast to existing frequent itemset mining algorithms, this part focus on itemsets that occurred not that frequent. Algorithms NIIMiner, RaCloMiner, and LSCMiner are proposed to identify such kind of itemsets efficiently. NIIMiner utilizes the negative itemset tree to extract all patterns that occurred less than a given support threshold in a top-down depth-first manner. RaCloMiner combines existing bottom-up frequent itemset mining algorithms with a top-down itemset mining algorithm to achieve a better performance in mining less frequent patterns. LSCMiner investigates the problem of mining less frequent closed patterns. The second part of this thesis studied the problem of interval-based temporal pattern mining in the stream environment. Interval-based temporal patterns are sequential patterns in which each event is aligned with a starting and ending temporal information. The ability to handle interval-based events and stream data is lacking in existing approaches. A novel intervalbased temporal pattern mining algorithm for stream data is described in this part. The last part of this thesis studies new problems in clustering on numeric datasets. The first problem tackled in this part is shape alternation adaptivity in clustering. In applications such as scientific data analysis, scientists need to deal with a series of datasets generated from one experiment. Cluster sizes and shapes are different in those datasets. A kNN density-based clustering algorithm, kadaClus, is proposed to provide the shape alternation adaptability so that users do not need to tune parameters for each dataset. The second problem studied in this part is clustering in an extremely noisy dataset. Many real-world datasets contain considerably more noises than in-cluster data points. A novel clustering algorithm, kenClus, is proposed to identify clusters in arbitrary shapes from extremely noisy datasets. Both clustering algorithms are kNN-based, which only require one parameter k. In each part, the efficiency and effectiveness of the presented techniques are thoroughly analyzed. Intensive experiments on synthetic and real-world datasets are conducted to show the benefits of the proposed algorithms over conventional approaches

    End-to-end anomaly detection in stream data

    Get PDF
    Nowadays, huge volumes of data are generated with increasing velocity through various systems, applications, and activities. This increases the demand for stream and time series analysis to react to changing conditions in real-time for enhanced efficiency and quality of service delivery as well as upgraded safety and security in private and public sectors. Despite its very rich history, time series anomaly detection is still one of the vital topics in machine learning research and is receiving increasing attention. Identifying hidden patterns and selecting an appropriate model that fits the observed data well and also carries over to unobserved data is not a trivial task. Due to the increasing diversity of data sources and associated stochastic processes, this pivotal data analysis topic is loaded with various challenges like complex latent patterns, concept drift, and overfitting that may mislead the model and cause a high false alarm rate. Handling these challenges leads the advanced anomaly detection methods to develop sophisticated decision logic, which turns them into mysterious and inexplicable black-boxes. Contrary to this trend, end-users expect transparency and verifiability to trust a model and the outcomes it produces. Also, pointing the users to the most anomalous/malicious areas of time series and causal features could save them time, energy, and money. For the mentioned reasons, this thesis is addressing the crucial challenges in an end-to-end pipeline of stream-based anomaly detection through the three essential phases of behavior prediction, inference, and interpretation. The first step is focused on devising a time series model that leads to high average accuracy as well as small error deviation. On this basis, we propose higher-quality anomaly detection and scoring techniques that utilize the related contexts to reclassify the observations and post-pruning the unjustified events. Last but not least, we make the predictive process transparent and verifiable by providing meaningful reasoning behind its generated results based on the understandable concepts by a human. The provided insight can pinpoint the anomalous regions of time series and explain why the current status of a system has been flagged as anomalous. Stream-based anomaly detection research is a principal area of innovation to support our economy, security, and even the safety and health of societies worldwide. We believe our proposed analysis techniques can contribute to building a situational awareness platform and open new perspectives in a variety of domains like cybersecurity, and health

    A framework for clustering and adaptive topic tracking on evolving text and social media data streams.

    Get PDF
    Recent advances and widespread usage of online web services and social media platforms, coupled with ubiquitous low cost devices, mobile technologies, and increasing capacity of lower cost storage, has led to a proliferation of Big data, ranging from, news, e-commerce clickstreams, and online business transactions to continuous event logs and social media expressions. These large amounts of online data, often referred to as data streams, because they get generated at extremely high throughputs or velocity, can make conventional and classical data analytics methodologies obsolete. For these reasons, the issues of management and analysis of data streams have been researched extensively in recent years. The special case of social media Big Data brings additional challenges, particularly because of the unstructured nature of the data, specifically free text. One classical approach to mine text data has been Topic Modeling. Topic Models are statistical models that can be used for discovering the abstract ``topics\u27\u27 that may occur in a corpus of documents. Topic models have emerged as a powerful technique in machine learning and data science, providing a great balance between simplicity and complexity. They also provide sophisticated insight without the need for real natural language understanding. However they have not been designed to cope with the type of text data that is abundant on social media platforms, but rather for traditional medium size corpora consisting of longer documents, adhering to a specific language and typically spanning a stable set of topics. Unlike traditional document corpora, social media messages tend to be very short, sparse, noisy, and do not adhere to a standard vocabulary, linguistic patterns, or stable topic distributions. They are also generated at high velocity that impose high demands on topic modeling; and their evolving or dynamic nature, makes any set of results from topic modeling quickly become stale in the face of changes in the textual content and topics discussed within social media streams. In this dissertation, we propose an integrated topic modeling framework built on top of an existing stream-clustering framework called Stream-Dashboard, which can extract, isolate, and track topics over any given time period. In this new framework, Stream Dashboard first clusters the data stream points into homogeneous groups. Then data from each group is ushered to the topic modeling framework which extracts finer topics from the group. The proposed framework tracks the evolution of the clusters over time to detect milestones corresponding to changes in topic evolution, and to trigger an adaptation of the learned groups and topics at each milestone. The proposed approach to topic modeling is different from a generic Topic Modeling approach because it works in a compartmentalized fashion, where the input document stream is split into distinct compartments, and Topic Modeling is applied on each compartment separately. Furthermore, we propose extensions to existing topic modeling and stream clustering methods, including: an adaptive query reformulation approach to help focus on the topic discovery with time; a topic modeling extension with adaptive hyper-parameter and with infinite vocabulary; an adaptive stream clustering algorithm incorporating the automated estimation of dynamic, cluster-specific temporal scales for adaptive forgetting to help facilitate clustering in a fast evolving data stream. Our experimental results show that the proposed adaptive forgetting clustering algorithm can mine better quality clusters; that our proposed compartmentalized framework is able to mine topics of better quality compared to competitive baselines; and that the proposed framework can automatically adapt to focus on changing topics using the proposed query reformulation strategy

    A study of two problems in data mining: anomaly monitoring and privacy preservation.

    Get PDF
    Bu, Yingyi.Thesis (M.Phil.)--Chinese University of Hong Kong, 2008.Includes bibliographical references (leaves 89-94).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement --- p.vChapter 1 --- Introduction --- p.1Chapter 1.1 --- Anomaly Monitoring --- p.1Chapter 1.2 --- Privacy Preservation --- p.5Chapter 1.2.1 --- Motivation --- p.7Chapter 1.2.2 --- Contribution --- p.12Chapter 2 --- Anomaly Monitoring --- p.16Chapter 2.1 --- Problem Statement --- p.16Chapter 2.2 --- A Preliminary Solution: Simple Pruning --- p.19Chapter 2.3 --- Efficient Monitoring by Local Clusters --- p.21Chapter 2.3.1 --- Incremental Local Clustering --- p.22Chapter 2.3.2 --- Batch Monitoring by Cluster Join --- p.24Chapter 2.3.3 --- Cost Analysis and Optimization --- p.28Chapter 2.4 --- Piecewise Index and Query Reschedule --- p.31Chapter 2.4.1 --- Piecewise VP-trees --- p.32Chapter 2.4.2 --- Candidate Rescheduling --- p.35Chapter 2.4.3 --- Cost Analysis --- p.36Chapter 2.5 --- Upper Bound Lemma: For Dynamic Time Warping Distance --- p.37Chapter 2.6 --- Experimental Evaluations --- p.39Chapter 2.6.1 --- Effectiveness --- p.40Chapter 2.6.2 --- Efficiency --- p.46Chapter 2.7 --- Related Work --- p.49Chapter 3 --- Privacy Preservation --- p.52Chapter 3.1 --- Problem Definition --- p.52Chapter 3.2 --- HD-Composition --- p.58Chapter 3.2.1 --- Role-based Partition --- p.59Chapter 3.2.2 --- Cohort-based Partition --- p.61Chapter 3.2.3 --- Privacy Guarantee --- p.70Chapter 3.2.4 --- Refinement of HD-composition --- p.75Chapter 3.2.5 --- Anonymization Algorithm --- p.76Chapter 3.3 --- Experiments --- p.77Chapter 3.3.1 --- Failures of Conventional Generalizations --- p.78Chapter 3.3.2 --- Evaluations of HD-Composition --- p.79Chapter 3.4 --- Related Work --- p.85Chapter 4 --- Conclusions --- p.87Bibliography --- p.8
    • …
    corecore