5,218 research outputs found

    EviPlant: An efficient digital forensic challenge creation, manipulation and distribution solution

    Full text link
    Education and training in digital forensics requires a variety of suitable challenge corpora containing realistic features including regular wear-and-tear, background noise, and the actual digital traces to be discovered during investigation. Typically, the creation of these challenges requires overly arduous effort on the part of the educator to ensure their viability. Once created, the challenge image needs to be stored and distributed to a class for practical training. This storage and distribution step requires significant time and resources and may not even be possible in an online/distance learning scenario due to the data sizes involved. As part of this paper, we introduce a more capable methodology and system as an alternative to current approaches. EviPlant is a system designed for the efficient creation, manipulation, storage and distribution of challenges for digital forensics education and training. The system relies on the initial distribution of base disk images, i.e., images containing solely base operating systems. In order to create challenges for students, educators can boot the base system, emulate the desired activity and perform a "diffing" of resultant image and the base image. This diffing process extracts the modified artefacts and associated metadata and stores them in an "evidence package". Evidence packages can be created for different personae, different wear-and-tear, different emulated crimes, etc., and multiple evidence packages can be distributed to students and integrated into the base images. A number of additional applications in digital forensic challenge creation for tool testing and validation, proficiency testing, and malware analysis are also discussed as a result of using EviPlant.Comment: Digital Forensic Research Workshop Europe 201

    Classification of Existing Virtualization Methods Used in Telecommunication Networks

    Full text link
    This article studies the existing methods of virtualization of different resources. The positive and negative aspects of each of the methods are analyzed, the perspectivity of the approach is noted. It is also made an attempt to classify virtualization methods according to the application domain, which allows us to discover the method weaknesses which are needed to be optimized.Comment: 4 pages, 3 figure

    Distributed computing methodology for training neural networks in an image-guided diagnostic application

    Get PDF
    Distributed computing is a process through which a set of computers connected by a network is used collectively to solve a single problem. In this paper, we propose a distributed computing methodology for training neural networks for the detection of lesions in colonoscopy. Our approach is based on partitioning the training set across multiple processors using a parallel virtual machine. In this way, interconnected computers of varied architectures can be used for the distributed evaluation of the error function and gradient values, and, thus, training neural networks utilizing various learning methods. The proposed methodology has large granularity and low synchronization, and has been implemented and tested. Our results indicate that the parallel virtual machine implementation of the training algorithms developed leads to considerable speedup, especially when large network architectures and training sets are used

    Virtual Machines and Networks - Installation, Performance Study, Advantages and Virtualization Options

    Full text link
    The interest in virtualization has been growing rapidly in the IT industry because of inherent benefits like better resource utilization and ease of system manageability. The experimentation and use of virtualization as well as the simultaneous deployment of virtual software are increasingly getting popular and in use by educational institutions for research and teaching. This paper stresses on the potential advantages associated with virtualization and the use of virtual machines for scenarios, which cannot be easily implemented and/or studied in a traditional academic network environment, but need to be explored and experimented by students to meet the raising needs and knowledge-base demanded by the IT industry. In this context, we discuss various aspects of virtualization - starting from the working principle of virtual machines, installation procedure for a virtual guest operating system on a physical host operating system, virtualization options and a performance study measuring the throughput obtained on a network of virtual machines and physical host machines. In addition, the paper extensively evaluates the use of virtual machines and virtual networks in an academic environment and also specifically discusses sample projects on network security, which may not be feasible enough to be conducted in a physical network of personal computers; but could be conducted only using virtual machines

    Introductory Computer Forensics

    Get PDF
    INTERPOL (International Police) built cybercrime programs to keep up with emerging cyber threats, and aims to coordinate and assist international operations for ?ghting crimes involving computers. Although signi?cant international efforts are being made in dealing with cybercrime and cyber-terrorism, ?nding effective, cooperative, and collaborative ways to deal with complicated cases that span multiple jurisdictions has proven dif?cult in practic

    The Role of Structural Reflection in Distributed Virtual Reality

    Get PDF
    The emergence of collaborative virtual world applications that run over the Internet has presented Virtual Reality (VR) application designers with new challenges. In an environment where the public internet streams multimedia data and is constantly under pressure to deliver over widely heterogeneous user-platforms, there has been a growing need that distributed virtual world applications be aware of and adapt to frequent variations in their context of execution. In this paper, we argue that in contrast to research efforts targeted at improvement of scalability, persistence and responsiveness capabilities, much less attempts have been aimed at addressing the flexibility, maintainability and extensibility requirements in contemporary Distributed VR applications. We propose the use of structural reflection as an approach that not only addresses these requirements but also offers added value in the form of providing a framework for scalability, persistence and responsiveness that is itself flexible, maintainable and extensible
    corecore