22,950 research outputs found

    Adversarial Deformation Regularization for Training Image Registration Neural Networks

    Get PDF
    We describe an adversarial learning approach to constrain convolutional neural network training for image registration, replacing heuristic smoothness measures of displacement fields often used in these tasks. Using minimally-invasive prostate cancer intervention as an example application, we demonstrate the feasibility of utilizing biomechanical simulations to regularize a weakly-supervised anatomical-label-driven registration network for aligning pre-procedural magnetic resonance (MR) and 3D intra-procedural transrectal ultrasound (TRUS) images. A discriminator network is optimized to distinguish the registration-predicted displacement fields from the motion data simulated by finite element analysis. During training, the registration network simultaneously aims to maximize similarity between anatomical labels that drives image alignment and to minimize an adversarial generator loss that measures divergence between the predicted- and simulated deformation. The end-to-end trained network enables efficient and fully-automated registration that only requires an MR and TRUS image pair as input, without anatomical labels or simulated data during inference. 108 pairs of labelled MR and TRUS images from 76 prostate cancer patients and 71,500 nonlinear finite-element simulations from 143 different patients were used for this study. We show that, with only gland segmentation as training labels, the proposed method can help predict physically plausible deformation without any other smoothness penalty. Based on cross-validation experiments using 834 pairs of independent validation landmarks, the proposed adversarial-regularized registration achieved a target registration error of 6.3 mm that is significantly lower than those from several other regularization methods.Comment: Accepted to MICCAI 201

    On Matching, and Even Rectifying, Dynamical Systems through Koopman Operator Eigenfunctions

    Full text link
    Matching dynamical systems, through different forms of conjugacies and equivalences, has long been a fundamental concept, and a powerful tool, in the study and classification of nonlinear dynamic behavior (e.g. through normal forms). In this paper we will argue that the use of the Koopman operator and its spectrum is particularly well suited for this endeavor, both in theory, but also especially in view of recent data-driven algorithm developments. We believe, and document through illustrative examples, that this can nontrivially extend the use and applicability of the Koopman spectral theoretical and computational machinery beyond modeling and prediction, towards what can be considered as a systematic discovery of "Cole-Hopf-type" transformations for dynamics.Comment: 34 pages, 10 figure

    Turbulence model reduction by deep learning

    Get PDF
    A central problem of turbulence theory is to produce a predictive model for turbulent fluxes. These have profound implications for virtually all aspects of the turbulence dynamics. In magnetic confinement devices, drift-wave turbulence produces anomalous fluxes via cross-correlations between fluctuations. In this work, we introduce a new, data-driven method for parameterizing these fluxes. The method uses deep supervised learning to infer a reduced mean-field model from a set of numerical simulations. We apply the method to a simple drift-wave turbulence system and find a significant new effect which couples the particle flux to the local \emph{gradient} of vorticity. Notably, here, this effect is much stronger than the oft-invoked shear suppression effect. We also recover the result via a simple calculation. The vorticity gradient effect tends to modulate the density profile. In addition, our method recovers a model for spontaneous zonal flow generation by negative viscosity, stabilized by nonlinear and hyperviscous terms. We highlight the important role of symmetry to implementation of the new method.Comment: To be published in Phys. Rev. E Rap. Comm. 6 pages, 7 figure
    • …
    corecore