31 research outputs found

    Detection and estimation of moving obstacles for a UAV

    Get PDF
    In recent years, research interest in Unmanned Aerial Vehicles (UAVs) has been grown rapidly because of their potential use for a wide range of applications. In this paper, we proposed a vision-based detection and position/velocity estimation of moving obstacle for a UAV. The knowledge of a moving obstacle's state, i.e., position, velocity, is essential to achieve better performance for an intelligent UAV system specially in autonomous navigation and landing tasks. The novelties are: (1) the design and implementation of a localization method using sensor fusion methodology which fuses Inertial Measurement Unit (IMU) signals and Pozyx signals; (2) The development of detection and estimation of moving obstacles method based on on-board vision system. Experimental results validate the effectiveness of the proposed approach. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved

    A Review of Radio Frequency Based Localization for Aerial and Ground Robots with 5G Future Perspectives

    Full text link
    Efficient localization plays a vital role in many modern applications of Unmanned Ground Vehicles (UGV) and Unmanned aerial vehicles (UAVs), which would contribute to improved control, safety, power economy, etc. The ubiquitous 5G NR (New Radio) cellular network will provide new opportunities for enhancing localization of UAVs and UGVs. In this paper, we review the radio frequency (RF) based approaches for localization. We review the RF features that can be utilized for localization and investigate the current methods suitable for Unmanned vehicles under two general categories: range-based and fingerprinting. The existing state-of-the-art literature on RF-based localization for both UAVs and UGVs is examined, and the envisioned 5G NR for localization enhancement, and the future research direction are explored

    A Review of Radio Frequency Based Localisation for Aerial and Ground Robots with 5G Future Perspectives

    Get PDF
    Efficient localisation plays a vital role in many modern applications of Unmanned Ground Vehicles (UGV) and Unmanned Aerial Vehicles (UAVs), which contributes to improved control, safety, power economy, etc. The ubiquitous 5G NR (New Radio) cellular network will provide new opportunities to enhance the localisation of UAVs and UGVs. In this paper, we review radio frequency (RF)-based approaches to localisation. We review the RF features that can be utilized for localisation and investigate the current methods suitable for Unmanned Vehicles under two general categories: range-based and fingerprinting. The existing state-of-the-art literature on RF-based localisation for both UAVs and UGVs is examined, and the envisioned 5G NR for localisation enhancement, and the future research direction are explored

    Planning in information space for a quadrotor helicopter in a GPS-denied environment

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2008.Includes bibliographical references (leaves 85-87).Unmanned Air Vehicles (UAVs) have thus far had limited success in flying autonomously indoors, with the exception of specially instrumented locations. In indoor environments, accurate global positioning information is unavailable, and the vehicle has to rely on onboard sensors to detect environmental features and infer its position. Given that a vehicle small enough to fly indoors can only carry a limited sensor payload, the vehicle's ability to localize itself varies across different environments, since different surroundings provide varying degrees of sensor information. Therefore, a vehicle that plans a path without regard to how well it can localize itself along that path runs the risk of becoming lost. My research focuses on how path-planning can be performed to minimize localization uncertainty, and works towards developing a motion-planning algorithm for a quadrotor helicopter. As a starting point, I apply the Belief Roadmap (BRM) algorithm, an information-theoretic extension of the Probabilistic Roadmap algorithm, incorporating sensing during the path-planning process. I make two theoretical contributions in this research. First, I extend the original BRM to use non-linear state inference via the Unscented Kalman Filter, providing better approximation of the non-linearities of laser sensing onboard the UAV. Second, I develop a sampling strategy for the BRM, minimizing the number of samples required to find a good path. Finally, I demonstrate the BRM path-planning algorithm on a quadrotor helicopter, navigating the vehicle autonomously in an indoor environment.by Ruijie He.S.M

    Information Aided Navigation: A Review

    Full text link
    The performance of inertial navigation systems is largely dependent on the stable flow of external measurements and information to guarantee continuous filter updates and bind the inertial solution drift. Platforms in different operational environments may be prevented at some point from receiving external measurements, thus exposing their navigation solution to drift. Over the years, a wide variety of works have been proposed to overcome this shortcoming, by exploiting knowledge of the system current conditions and turning it into an applicable source of information to update the navigation filter. This paper aims to provide an extensive survey of information aided navigation, broadly classified into direct, indirect, and model aiding. Each approach is described by the notable works that implemented its concept, use cases, relevant state updates, and their corresponding measurement models. By matching the appropriate constraint to a given scenario, one will be able to improve the navigation solution accuracy, compensate for the lost information, and uncover certain internal states, that would otherwise remain unobservable.Comment: 8 figures, 3 table

    Integrating GRU with a Kalman filter to enhance visual inertial odometry performance in complex environments

    Get PDF
    To enhance system reliability and mitigate the vulnerabilities of the Global Navigation Satellite Systems (GNSS), it is common to fuse the Inertial Measurement Unit (IMU) and visual sensors with the GNSS receiver in the navigation system design, effectively enabling compensations with absolute positions and reducing data gaps. To address the shortcomings of a traditional Kalman Filter (KF), such as sensor errors, an imperfect non-linear system model, and KF estimation errors, a GRU-aided ESKF architecture is proposed to enhance the positioning performance. This study conducts Failure Mode and Effect Analysis (FMEA) to prioritize and identify the potential faults in the urban environment, facilitating the design of improved fault-tolerant system architecture. The identified primary fault events are data association errors and navigation environment errors during fault conditions of feature mismatch, especially in the presence of multiple failure modes. A hybrid federated navigation system architecture is employed using a Gated Recurrent Unit (GRU) to predict state increments for updating the state vector in the Error Estate Kalman Filter (ESKF) measurement step. The proposed algorithm’s performance is evaluated in a simulation environment in MATLAB under multiple visually degraded conditions. Comparative results provide evidence that the GRU-aided ESKF outperforms standard ESKF and state-of-the-art solutions like VINS-Mono, End-to-End VIO, and Self-Supervised VIO, exhibiting accuracy improvement in complex environments in terms of root mean square errors (RMSEs) and maximum errors

    Reliable Navigation for SUAS in Complex Indoor Environments

    Get PDF
    Indoor environments are a particular challenge for Unmanned Aerial Vehicles (UAVs). Effective navigation through these GPS-denied environments require alternative localization systems, as well as methods of sensing and avoiding obstacles while remaining on-task. Additionally, the relatively small clearances and human presence characteristic of indoor spaces necessitates a higher level of precision and adaptability than is common in traditional UAV flight planning and execution. This research blends the optimization of individual technologies, such as state estimation and environmental sensing, with system integration and high-level operational planning. The combination of AprilTag visual markers, multi-camera Visual Odometry, and IMU data can be used to create a robust state estimator that describes position, velocity, and rotation of a multicopter within an indoor environment. However these data sources have unique, nonlinear characteristics that should be understood to effectively plan for their usage in an automated environment. The research described herein begins by analyzing the unique characteristics of these data streams in order to create a highly-accurate, fault-tolerant state estimator. Upon this foundation, the system built, tested, and described herein uses Visual Markers as navigation anchors, visual odometry for motion estimation and control, and then uses depth sensors to maintain an up-to-date map of the UAV\u27s immediate surroundings. It develops and continually refines navigable routes through a novel combination of pre-defined and sensory environmental data. Emphasis is put on the real-world development and testing of the system, through discussion of computational resource management and risk reduction

    Development of Non Expensive Technologies for Precise Maneuvering of Completely Autonomous Unmanned Aerial Vehicles

    Get PDF
    In this paper, solutions for precise maneuvering of an autonomous small (e.g., 350-class) Unmanned Aerial Vehicles (UAVs) are designed and implemented from smart modifications of non expensive mass market technologies. The considered class of vehicles suffers from light load, and, therefore, only a limited amount of sensors and computing devices can be installed on-board. Then, to make the prototype capable of moving autonomously along a fixed trajectory, a “cyber-pilot”, able on demand to replace the human operator, has been implemented on an embedded control board. This cyber-pilot overrides the commands thanks to a custom hardware signal mixer. The drone is able to localize itself in the environment without ground assistance by using a camera possibly mounted on a 3 Degrees Of Freedom (DOF) gimbal suspension. A computer vision system elaborates the video stream pointing out land markers with known absolute position and orientation. This information is fused with accelerations from a 6-DOF Inertial Measurement Unit (IMU) to generate a “virtual sensor” which provides refined estimates of the pose, the absolute position, the speed and the angular velocities of the drone. Due to the importance of this sensor, several fusion strategies have been investigated. The resulting data are, finally, fed to a control algorithm featuring a number of uncoupled digital PID controllers which work to bring to zero the displacement from the desired trajectory
    corecore