71 research outputs found

    Generative Adversarial Networks Selection Approach for Extremely Imbalanced Fault Diagnosis of Reciprocating Machinery

    Get PDF
    At present, countless approaches to fault diagnosis in reciprocating machines have been proposed, all considering that the available machinery dataset is in equal proportions for all conditions. However, when the application is closer to reality, the problem of data imbalance is increasingly evident. In this paper, we propose a method for the creation of diagnoses that consider an extreme imbalance in the available data. Our approach first processes the vibration signals of the machine using a wavelet packet transform-based feature-extraction stage. Then, improved generative models are obtained with a dissimilarity-based model selection to artificially balance the dataset. Finally, a Random Forest classifier is created to address the diagnostic task. This methodology provides a considerable improvement with 99% of data imbalance over other approaches reported in the literature, showing performance similar to that obtained with a balanced set of data.National Natural Science Foundation of China, under Grant 51605406National Natural Science Foundation of China under Grant 7180104

    Degradation stage classification via interpretable feature learning

    Get PDF
    Predictive maintenance (PdM) advocates for the usage of machine learning technologies to monitor asset's health conditions and plan maintenance activities accordingly. However, according to the specific degradation process, some health-related measures (e.g. temperature) may be not informative enough to reliably assess the health stage. Moreover, each measure needs to be properly treated to extract the information linked to the health stage. Those issues are usually addressed by performing a manual feature engineering, which results in high management cost and poor generalization capability of those approaches. In this work, we address this issue by coupling a health stage classifier with a feature learning mechanism. With feature learning, minimally processed data are automatically transformed into informative features. Many effective feature learning approaches are based on deep learning. With those, the features are obtained as a non-linear combination of the inputs, thus it is difficult to understand the input's contribution to the classification outcome and so the reasoning behind the model. Still, these insights are increasingly required to interpret the results and assess the reliability of the model. In this regard, we propose a feature learning approach able to (i) effectively extract high-quality features by processing different input signals, and (ii) provide useful insights about the most informative domain transformations (e.g. Fourier transform or probability density function) of the input signals (e.g. vibration or temperature). The effectiveness of the proposed approach is tested with publicly available real-world datasets about bearings' progressive deterioration and compared with the traditional feature engineering approach

    Few-Shot Learning Approaches for Fault Diagnosis Using Vibration Data: A Comprehensive Review

    Get PDF
    Fault detection and diagnosis play a crucial role in ensuring the reliability and safety of modern industrial systems. For safety and cost considerations, critical equipment and systems in industrial operations are typically not allowed to operate in severe fault states. Moreover, obtaining labeled samples for fault diagnosis often requires significant human effort. This results in limited labeled data for many application scenarios. Thus, the focus of attention has shifted towards learning from a small amount of data. Few-shot learning has emerged as a solution to this challenge, aiming to develop models that can effectively solve problems with only a few samples. This approach has gained significant traction in various fields, such as computer vision, natural language processing, audio and speech, reinforcement learning, robotics, and data analysis. Surprisingly, despite its wide applicability, there have been limited investigations or reviews on applying few-shot learning to the field of mechanical fault diagnosis. In this paper, we provide a comprehensive review of the relevant work on few-shot learning in mechanical fault diagnosis from 2018 to September 2023. By examining the existing research, we aimed to shed light on the potential of few-shot learning in this domain and offer valuable insights for future research directions

    A Literature Review of Fault Diagnosis Based on Ensemble Learning

    Get PDF
    The accuracy of fault diagnosis is an important indicator to ensure the reliability of key equipment systems. Ensemble learning integrates different weak learning methods to obtain stronger learning and has achieved remarkable results in the field of fault diagnosis. This paper reviews the recent research on ensemble learning from both technical and field application perspectives. The paper summarizes 87 journals in recent web of science and other academic resources, with a total of 209 papers. It summarizes 78 different ensemble learning based fault diagnosis methods, involving 18 public datasets and more than 20 different equipment systems. In detail, the paper summarizes the accuracy rates, fault classification types, fault datasets, used data signals, learners (traditional machine learning or deep learning-based learners), ensemble learning methods (bagging, boosting, stacking and other ensemble models) of these fault diagnosis models. The paper uses accuracy of fault diagnosis as the main evaluation metrics supplemented by generalization and imbalanced data processing ability to evaluate the performance of those ensemble learning methods. The discussion and evaluation of these methods lead to valuable research references in identifying and developing appropriate intelligent fault diagnosis models for various equipment. This paper also discusses and explores the technical challenges, lessons learned from the review and future development directions in the field of ensemble learning based fault diagnosis and intelligent maintenance

    Clustering-guided novel unsupervised domain adversarial network for partial transfer fault diagnosis of rotating machinery

    Get PDF
    Unsupervised partial transfer fault diagnosis studies of rotating machinery have practical significance, which still exists some challenges, for example, the learned domain-specific statistics and parameters usually influence the learning effect of target-domain features to some degree, and the relatively scattered target-domain features will lead to negative transfer. To overcome those limitations and further improve partial transfer fault diagnosis performance, a clustering-guided novel unsupervised domain adversarial network is proposed in this paper. Firstly, a novel unsupervised domain adversarial network is constructed using domain-specific batch normalization to remove domain-specific information to enhance alignment between source and target domains. Secondly, embedded clustering strategy is designed to learn tightly clustered target-domain features to suppress negative transfer in partial domain adaptation process. Finally, a joint optimization objective function is defined to balance different losses to improve the training and diagnosis performance. Two experimental cases of bevel gearbox and bearing are used to validate the effectiveness and superiority of the proposed method in solving unsupervised partial transfer fault diagnosis problems
    • …
    corecore