20,419 research outputs found

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Comap: A synthetic dataset for collective multi-agent perception of autonomous driving

    Get PDF
    Collective perception of connected vehicles can sufficiently increase the safety and reliability of autonomous driving by sharing perception information. However, collecting real experimental data for such scenarios is extremely expensive. Therefore, we built a computational efficient co-simulation synthetic data generator through CARLA and SUMO simulators. The simulated data contain image and point cloud data as well as ground truth for object detection and semantic segmentation tasks. To verify the superior performance gain of collective perception over single-vehicle perception, we conducted experiments of vehicle detection, which is one of the most important perception tasks for autonomous driving, on this data set. A 3D object detector and a Bird's Eye View (BEV) detector are trained and then test with different configurations of the number of cooperative vehicles and vehicle communication ranges. The experiment results showed that collective perception can not only dramatically increase the overall mean detection accuracy but also the localization accuracy of detected bounding boxes. Besides, a vehicle detection comparison experiment showed that the detection performance drop caused by sensor observation noise can be canceled out by redundant information collected by multiple vehicles

    Emerging privacy challenges and approaches in CAV systems

    Get PDF
    The growth of Internet-connected devices, Internet-enabled services and Internet of Things systems continues at a rapid pace, and their application to transport systems is heralded as game-changing. Numerous developing CAV (Connected and Autonomous Vehicle) functions, such as traffic planning, optimisation, management, safety-critical and cooperative autonomous driving applications, rely on data from various sources. The efficacy of these functions is highly dependent on the dimensionality, amount and accuracy of the data being shared. It holds, in general, that the greater the amount of data available, the greater the efficacy of the function. However, much of this data is privacy-sensitive, including personal, commercial and research data. Location data and its correlation with identity and temporal data can help infer other personal information, such as home/work locations, age, job, behavioural features, habits, social relationships. This work categorises the emerging privacy challenges and solutions for CAV systems and identifies the knowledge gap for future research, which will minimise and mitigate privacy concerns without hampering the efficacy of the functions
    corecore