169,521 research outputs found

    Simulating Alternative Tuberculosis Diagnosis Methods in Underdeveloped Countries

    Get PDF
    Tuberculosis is the deadliest infectious disease in the world; it is especially rampant in underdeveloped countries because they do not have the infrastructure, technology, or funding to properly combat the infection. However, the development of portable point-of-care diagnosis machines can reverse this epidemic as they far surpass conventional laboratory identification. The question now is where to place these machines, which is a difficult decision with a lack of data. Therefore, a flexible simulation model is created to test the implementation of these machines with different countries and configurations. The simulation tests the baseline model and three proposed implementations of the machines. Initial analysis indicates these machines can reduce the average diagnosis period of patients by a factor of one-hundred. Furthermore, a fractional factorial design was conducted to test the sensitivity of each variable to determine which data needs to be collected before making any decisions. The model is built to be accessible and flexible allowing for the model to be expanded upon in future research

    A Verified Information-Flow Architecture

    Get PDF
    SAFE is a clean-slate design for a highly secure computer system, with pervasive mechanisms for tracking and limiting information flows. At the lowest level, the SAFE hardware supports fine-grained programmable tags, with efficient and flexible propagation and combination of tags as instructions are executed. The operating system virtualizes these generic facilities to present an information-flow abstract machine that allows user programs to label sensitive data with rich confidentiality policies. We present a formal, machine-checked model of the key hardware and software mechanisms used to dynamically control information flow in SAFE and an end-to-end proof of noninterference for this model. We use a refinement proof methodology to propagate the noninterference property of the abstract machine down to the concrete machine level. We use an intermediate layer in the refinement chain that factors out the details of the information-flow control policy and devise a code generator for compiling such information-flow policies into low-level monitor code. Finally, we verify the correctness of this generator using a dedicated Hoare logic that abstracts from low-level machine instructions into a reusable set of verified structured code generators

    Discovery and Selection of Certified Web Services Through Registry-Based Testing and Verification

    Get PDF
    Reliability and trust are fundamental prerequisites for the establishment of functional relationships among peers in a Collaborative Networked Organisation (CNO), especially in the context of Virtual Enterprises where economic benefits can be directly at stake. This paper presents a novel approach towards effective service discovery and selection that is no longer based on informal, ambiguous and potentially unreliable service descriptions, but on formal specifications that can be used to verify and certify the actual Web service implementations. We propose the use of Stream X-machines (SXMs) as a powerful modelling formalism for constructing the behavioural specification of a Web service, for performing verification through the generation of exhaustive test cases, and for performing validation through animation or model checking during service selection

    Leveraging Semantic Web Service Descriptions for Validation by Automated Functional Testing

    Get PDF
    Recent years have seen the utilisation of Semantic Web Service descriptions for automating a wide range of service-related activities, with a primary focus on service discovery, composition, execution and mediation. An important area which so far has received less attention is service validation, whereby advertised services are proven to conform to required behavioural specifications. This paper proposes a method for validation of service-oriented systems through automated functional testing. The method leverages ontology-based and rule-based descriptions of service inputs, outputs, preconditions and effects (IOPE) for constructing a stateful EFSM specification. The specification is subsequently utilised for functional testing and validation using the proven Stream X-machine (SXM) testing methodology. Complete functional test sets are generated automatically at an abstract level and are then applied to concrete Web services, using test drivers created from the Web service descriptions. The testing method comes with completeness guarantees and provides a strong method for validating the behaviour of Web services
    • …
    corecore