5,007 research outputs found

    AI/ML Algorithms and Applications in VLSI Design and Technology

    Full text link
    An evident challenge ahead for the integrated circuit (IC) industry in the nanometer regime is the investigation and development of methods that can reduce the design complexity ensuing from growing process variations and curtail the turnaround time of chip manufacturing. Conventional methodologies employed for such tasks are largely manual; thus, time-consuming and resource-intensive. In contrast, the unique learning strategies of artificial intelligence (AI) provide numerous exciting automated approaches for handling complex and data-intensive tasks in very-large-scale integration (VLSI) design and testing. Employing AI and machine learning (ML) algorithms in VLSI design and manufacturing reduces the time and effort for understanding and processing the data within and across different abstraction levels via automated learning algorithms. It, in turn, improves the IC yield and reduces the manufacturing turnaround time. This paper thoroughly reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing. Moreover, we discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design, aiming for high-speed, highly intelligent, and efficient implementations

    MLCAD: A Survey of Research in Machine Learning for CAD Keynote Paper

    Get PDF

    Measuring aberrations in lithographic projection systems with phase wheel targets

    Get PDF
    A significant factor in the degradation of nanolithographic image fidelity is optical wavefront aberration. Aerial image sensitivity to aberrations is currently much greater than in earlier lithographic technologies, a consequence of increased resolution requirements. Optical wavefront tolerances are dictated by the dimensional tolerances of features printed, which require lens designs with a high degree of aberration correction. In order to increase lithographic resolution, lens numerical aperture (NA) must continue to increase and imaging wavelength must decrease. Not only do aberration magnitudes scale inversely with wavelength, but high-order aberrations increase at a rate proportional to NA2 or greater, as do aberrations across the image field. Achieving lithographic-quality diffraction limited performance from an optical system, where the relatively low image contrast is further reduced by aberrations, requires the development of highly accurate in situ aberration measurement. In this work, phase wheel targets are used to generate an optical image, which can then be used to both describe and monitor aberrations in lithographic projection systems. The use of lithographic images is critical in this approach, since it ensures that optical system measurements are obtained during the system\u27s standard operation. A mathematical framework is developed that translates image errors into the Zernike polynomial representation, commonly used in the description of optical aberrations. The wavefront is decomposed into a set of orthogonal basis functions, and coefficients for the set are estimated from image-based measurements. A solution is deduced from multiple image measurements by using a combination of different image sets. Correlations between aberrations and phase wheel image characteristics are modeled based on physical simulation and statistical analysis. The approach uses a well-developed rigorous simulation tool to model significant aspects of lithography processes to assess how aberrations affect the final image. The aberration impact on resulting image shapes is then examined and approximations identified so the aberration computation can be made into a fast compact model form. Wavefront reconstruction examples are presented together with corresponding numerical results. The detailed analysis is given along with empirical measurements and a discussion of measurement capabilities. Finally, the impact of systematic errors in exposure tool parameters is measureable from empirical data and can be removed in the calibration stage of wavefront analysis

    Ball lens embedded through-package via to enable backside coupling between silicon photonics interposer and board-level interconnects

    Get PDF
    Development of an efficient and densely integrated optical coupling interface for silicon photonics based board-level optical interconnects is one of the key challenges in the domain of 2.5D/3D electro-optic integration. Enabling high-speed on-chip electro-optic conversion and efficient optical transmission across package/board-level short-reach interconnections can help overcome the limitations of a conventional electrical I/O in terms of bandwidth density and power consumption in a high-performance computing environment. In this context, we have demonstrated a novel optical coupling interface to integrate silicon photonics with board-level optical interconnects. We show that by integrating a ball lens in a via drilled in an organic package substrate, the optical beam diffracted from a downward directionality grating on a photonics chip can be coupled to a board-level polymer multimode waveguide with a good alignment tolerance. A key result from the experiment was a 14 chip-to-package 1-dB lateral alignment tolerance for coupling into a polymer waveguide with a cross-section of 20 x 25. An in-depth analysis of loss distribution across several interfaces was done and a -3.4 dB coupling efficiency was measured between the optical interface comprising of output grating, ball lens and polymer waveguide. Furthermore, it is shown that an efficiency better than -2 dB can be achieved by tweaking few parameters in the coupling interface. The fabrication of the optical interfaces and related measurements are reported and verified with simulation results

    Design, Fabrication and Characterization of Photonic Crystal Light-Emitting Diodes for Solid-State Lighting

    Get PDF
    Residential, commercial, and industrial lighting applications contribute to ∼19% of total energy consumption worldwide. The application of more efficient sources of lighting, such as solid-state lighting (SSL) sources, could result in potential energy savings of about 65%. Current technologies employ semiconductor-based light-emitting diodes (LEDs) as the core elements of SSL devices to provide general-purpose light in a wide range of color temperatures. However, there still exists several device level issues, such as poor material quality, low quantum efficiencies, large percentage of light being trapped, etc. These non-idealities are barriers for SSL sources replacing incandescent and compact fluorescent sources on an equivalent lumens-per-watt basis.;WVU SSL research interests involve addressing device-level issues associated with III-V nitride materials, as well as optimizing the growth of materials and performance of fabricated devices. One major goal of research efforts is to provide solutions for improvement in light extraction in III-nitride-based devices through the use of integrated, device-level optical elements such as photonic crystals. Photonic Crystals (PhCs) are periodic dielectric structures that possess unique optical properties. PhCs are known for possessing an optical band gap that enables blocking of certain range of wavelengths based on their feature sizes. Additionally, they can also be utilized as diffractive elements when placed in the path of the photons. PhC structures in LEDs are commonly utilized for light extraction improvement and the integration process into the device structure often results in sub-optimal electrical characteristics. The work presented here provides the details of novel processes to add nanophotonic structures to metal and transparent conducting contacts (like indium tin oxide (ITO)) for indium gallium nitride/gallium nitride (InGaN/GaN) based multi-quantum well blue LEDs with emission wavelength in range of lambda=440--470 nm. The developed integration processes will enable improvement in the light extraction of the devices while reducing damage to the active regions of the device and maintaining optimal electrical characteristics. Novel electron beam resist like hydrogen silsesquioxane (HSQ) was utilized to achieve integration of PhCs with minimal degradation. Due to its unique chemical properties, a new classification of PhC structures were realized, that involves cured form of HSQ and named hybrid PhCs. Applying this process, hybrid PhC structures with features of 150 nm in diameter with a pitch of 500 nm in triangular and square lattice configurations fabricated in ITO contacts were integrated into the LEDs. As a result, the devices with hybrid PhC structures showed an improvement of ∼5x in intensity when compared to the unpatterned device.;This work also involved the development of novel bilayer methods using HSQ and sacrificial polymer layers for successful integration of PhCs with holes in transparent conducting layer contacts like ITO. The bilayer process developed will enable in realizing the more traditional PhC structures without the aforementioned process induced sub-optimal electrical characteristics. Additionally, nanosphere lithography (NSL) techniques like spin coating and thermal evaporation were explored as alternative patterning methodologies to enable integration of PhC structures on a large-scale. Utilizing thermal evaporation method, a 98.5% coverage of uniform single layer of polystyrene beads was achieved over a 1.5 x 1.5 cm2 area. This approach to device fabrication will allow PhCs to be integrated into commercial devices inducing less structural damage

    Getting Chemical and Biochemical Engineers Excited about Additive Manufacturing

    Get PDF
    A new course was designed to attract chemical and bioengineers to additive manufacturing and to provide them with an effective approach to this new field. The goal is a wider use of the advantages of additive manufacturing for complex multifunctional components in chemical process engineering. We describe the structure of the course and the experiences from the first two years. Students show great interest and are able to develop their own functional components with assistance. Yet many have deficits in the use of CAD software, which will be remedied in the future through a specific lecture

    Parametric Optimization of Visible Wavelength Gold Lattice Geometries for Improved Plasmon-Enhanced Fluorescence Spectroscopy

    Get PDF
    The exploitation of spectro-plasmonics will allow for innovations in optical instrumentation development and the realization of more efficient optical biodetection components. Biosensors have been shown to improve the overall quality of life through real-time detection of various antibody-antigen reactions, biomarkers, infectious diseases, pathogens, toxins, viruses, etc. has led to increased interest in the research and development of these devices. Further advancements in modern biosensor development will be realized through novel electrochemical, electromechanical, bioelectrical, and/or optical transduction methods aimed at reducing the size, cost, and limit of detection (LOD) of these sensor systems. One such method of optical transduction involves the exploitation of the plasmonic resonance of noble metal nanostructures. This thesis presents the optimization of the electric (E) field enhancement granted from localized surface plasmon resonance (LSPR) via parametric variation of periodic gold lattice geometries using finite difference time domain (FDTD) software. Comprehensive analyses of cylindrical, square, star, and triangular lattice feature geometries were performed to determine the largest surface E-field enhancement resulting from LSPR for reducing the LOD of plasmon-enhanced fluorescence (PEF). The design of an optical transducer engineered to yield peak E-field enhancement and, therefore, peak excitation enhancement of fluorescent labels would enable for improved emission enhancement of these labels. The methodology presented in this thesis details the optimization of plasmonic lattice geometries for improving current visible wavelength fluorescence spectroscopy
    • …
    corecore