784 research outputs found

    PaaSword: A Data Privacy and Context-aware Security Framework for Developing Secure Cloud Applications - Technical and Scientific Contributions

    Get PDF
    Most industries worldwide have entered a period of reaping the benefits and opportunities cloud offers. At the same time, many efforts are made to address engineering challenges for the secure development of cloud systems and software.With the majority of software engineering projects today relying on the cloud, the task to structure end-to-end secure-by-design cloud systems becomes challenging but at the same time mandatory. The PaaSword project has been commissioned to address security and data privacy in a holistic way by proposing a context-aware security-by-design framework to support software developers in constructing secure applications for the cloud. This chapter presents an overview of the PaaSword project results, including the scientific achievements as well as the description of the technical solution. The benefits offered by the framework are validated through two pilot implementations and conclusions are drawn based on the future research challenges which are discussed in a research agenda

    Hybrid clouds for data-Intensive, 5G-Enabled IoT applications: an overview, key issues and relevant architecture

    Get PDF
    Hybrid cloud multi-access edge computing (MEC) deployments have been proposed as efficient means to support Internet of Things (IoT) applications, relying on a plethora of nodes and data. In this paper, an overview on the area of hybrid clouds considering relevant research areas is given, providing technologies and mechanisms for the formation of such MEC deployments, as well as emphasizing several key issues that should be tackled by novel approaches, especially under the 5G paradigm. Furthermore, a decentralized hybrid cloud MEC architecture, resulting in a Platform-as-a-Service (PaaS) is proposed and its main building blocks and layers are thoroughly described. Aiming to offer a broad perspective on the business potential of such a platform, the stakeholder ecosystem is also analyzed. Finally, two use cases in the context of smart cities and mobile health are presented, aimed at showing how the proposed PaaS enables the development of respective IoT applications.Peer ReviewedPostprint (published version

    PaaSword: A Holistic Data Privacy and Security by Design Framework for Cloud Services

    Get PDF
    Enterprises increasingly recognize the compelling economic and operational benefits from virtualizing and pooling IT resources in the cloud. Nevertheless, the significant and valuable transformation of organizations that adopt cloud computing is accompanied by a number of security threats that should be considered. In this position paper, we outline significant security challenges presented when migrating to a cloud environment and propose PaaSword - a novel holistic framework that aspires to alleviate these challenges. Specifically, this proposed framework involves a context-aware security model, the necessary policies enforcement mechanism along with a physical distribution, encryption and query middleware

    Entangled cloud storage

    Get PDF
    Entangled cloud storage (Aspnes et al., ESORICS 2004) enables a set of clients to “entangle” their files into a single clew to be stored by a (potentially malicious) cloud provider. The entanglement makes it impossible to modify or delete significant part of the clew without affecting all files encoded in the clew. A clew keeps the files in it private but still lets each client recover his own data by interacting with the cloud provider; no cooperation from other clients is needed. At the same time, the cloud provider is discouraged from altering or overwriting any significant part of the clew as this will imply that none of the clients can recover their files. We put forward the first simulation-based security definition for entangled cloud storage, in the framework of universal composability (Canetti, 2001). We then construct a protocol satisfying our security definition, relying on an entangled encoding scheme based on privacy-preserving polynomial interpolation; entangled encodings were originally proposed by Aspnes et al. as useful tools for the purpose of data entanglement. As a contribution of independent interest we revisit the security notions for entangled encodings, putting forward stronger definitions than previous work (that for instance did not consider collusion between clients and the cloud provider). Protocols for entangled cloud storage find application in the cloud setting, where clients store their files on a remote server and need to be ensured that the cloud provider will not modify or delete their data illegitimately. Current solutions, e.g., based on Provable Data Possession and Proof of Retrievability, require the server to be challenged regularly to provide evidence that the clients’ files are stored at a given time. Entangled cloud storage provides an alternative approach where any single client operates implicitly on behalf of all others, i.e., as long as one client's files are intact, the entire remote database continues to be safe and unblemishe

    Comparative Study Of Implementing The On-Premises and Cloud Business Intelligence On Business Problems In a Multi-National Software Development Company

    Get PDF
    Internship Report presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceNowadays every enterprise wants to be competitive. In the last decade, the data volumes are increased dramatically. As each year data in the market increases, the ability to extract, analyze and manage the data become the backbone condition for the organization to be competitive. In this condition, organizations need to adapt their technologies to the new business reality in order to be competitive and provide new solutions that meet new requests. Business Intelligence by the main definition is the ability to extract analyze and manage the data through which an organization gain a competitive advantage. Before using this approach, it’s important to decide on which computing system it will base on, considering the volume of data, business context of the organization and technologies requirements of the market. In the last 10 years, the popularity of cloud computing increased and divided the computing Systems into On-Premises and cloud. The cloud benefits are based on providing scalability, availability and fewer costs. On another hand, traditional On-Premises provides independence of software configuration, control over data and high security. The final decision as to which computing paradigm to follow in the organization it’s not an easy task as well as depends on the business context of the organization, and the characteristics of the performance of the current On-Premises systems in business processes. In this case, Business Intelligence functions and requires in-depth analysis in order to understand if cloud computing technologies could better perform in those processes than traditional systems. The objective of this internship is to conduct a comparative study between 2 computing systems in Business Intelligence routine functions. The study will compare the On-Premises Business Intelligence Based on Oracle Architecture with Cloud Business Intelligence based on Google Cloud Services. A comparative study will be conducted through participation in activities and projects in the Business Intelligence department, of a company that develops software digital solutions to serve the telecommunications market for 12 months, as an internship student in the 2nd year of a master’s degree in Information Management, with a specialization in Knowledge Management and Business Intelligence at Nova Information Management School (NOVA IMS)
    • …
    corecore