628 research outputs found

    Cognitive Connectivity Resilience in Multi-layer Remotely Deployed Mobile Internet of Things

    Full text link
    Enabling the Internet of things in remote areas without traditional communication infrastructure requires a multi-layer network architecture. The devices in the overlay network are required to provide coverage to the underlay devices as well as to remain connected to other overlay devices. The coordination, planning, and design of such two-layer heterogeneous networks is an important problem to address. Moreover, the mobility of the nodes and their vulnerability to adversaries pose new challenges to the connectivity. For instance, the connectivity of devices can be affected by changes in the network, e.g., the mobility of the underlay devices or the unavailability of overlay devices due to failure or adversarial attacks. To this end, this work proposes a feedback based adaptive, self-configurable, and resilient framework for the overlay network that cognitively adapts to the changes in the network to provide reliable connectivity between spatially dispersed smart devices. Our results show that if sufficient overlay devices are available, the framework leads to a connected configuration that ensures a high coverage of the mobile underlay network. Moreover, the framework can actively reconfigure itself in the event of varying levels of device failure.Comment: To appear in IEEE Global Communications Conference (Globecom 2017

    Optimizing performance and energy efficiency of group communication and internet of things in cognitive radio networks

    Get PDF
    Data traffic in the wireless networks has grown at an unprecedented rate. While traditional wireless networks follow fixed spectrum assignment, spectrum scarcity problem becomes a major challenge in the next generations of wireless networks. Cognitive radio is a promising candidate technology that can mitigate this critical challenge by allowing dynamic spectrum access and increasing the spectrum utilization. As users and data traffic demands increases, more efficient communication methods to support communication in general, and group communication in particular, are needed. On the other hand, limited battery for the wireless network device in general makes it a bottleneck for enhancing the performance of wireless networks. In this thesis, the problem of optimizing the performance of group communication in CRNs is studied. Moreover, energy efficient and wireless-powered group communication in CRNs are considered. Additionally, a cognitive mobile base station and a cognitive UAV are proposed for the purpose of optimizing energy transfer and data dissemination, respectively. First, a multi-objective optimization for many-to-many communication in CRNs is considered. Given a many-to-many communication request, the goal is to support message routing from each user in the many-to-many group to each other. The objectives are minimizing the delay and the number of used links and maximizing data rate. The network is modeled using a multi-layer hyper graph, and the secondary users\u27 transmission is scheduled after establishing the conflict graph. Due to the difficulty of solving the problem optimally, a modified version of an Ant Colony meta-heuristic algorithm is employed to solve the problem. Additionally, energy efficient multicast communication in CRNs is introduced while considering directional and omnidirectional antennas. The multicast service is supported such that the total energy consumption of data transmission and channel switching is minimized. The optimization problem is formulated as a Mixed Integer Linear Program (MILP), and a heuristic algorithm is proposed to solve the problem in polynomial time. Second, wireless-powered machine-to-machine multicast communication in cellular networks is studied. To incentivize Internet of Things (IoT) devices to participate in forwarding the multicast messages, each IoT device participates in messages forwarding receives Radio Frequency (RF) energy form Energy Transmitters (ET) not less than the amount of energy used for messages forwarding. The objective is to minimize total transferred energy by the ETs. The problem is formulated mathematically as a Mixed Integer Nonlinear Program (MINLP), and a Generalized Bender Decomposition with Successive Convex Programming (GBD-SCP) algorithm is introduced to get an approximate solution since there is no efficient way in general to solve the problem optimally. Moreover, another algorithm, Constraints Decomposition with SCP and Binary Variable Relaxation (CDR), is proposed to get an approximate solution in a more efficient way. On the other hand, a cognitive mobile station base is proposed to transfer data and energy to a group of IoT devices underlying a primary network. Total energy consumed by the cognitive base station in its mobility, data transmission and energy transfer is minimized. Moreover, the cognitive base station adjusts its location and transmission power and transmission schedule such that data and energy demands are supported within a certain tolerable time and the primary users are protected from harmful interference. Finally, we consider a cognitive Unmanned Aerial Vehicle (UAV) to disseminate data to IoT devices. The UAV senses the spectrum and finds an idle channel, then it predicts when the corresponding primary user of the selected channel becomes active based on the elapsed time of the off period. Accordingly, it starts its transmission at the beginning of the next frame right after finding the channel is idle. Moreover, it decides the number of the consecutive transmission slots that it will use such that the number of interfering slots to the corresponding primary user does not exceed a certain threshold. A mathematical problem is formulated to maximize the minimum number of bits received by the IoT devices. A successive convex programming-based algorithm is used to get a solution for the problem in an efficiency way. It is shown that the used algorithm converges to a Kuhn Tucker point

    UAV-Assisted Sensor Data Dissemination in mmWave Vehicular Networks Based on Network Coding

    Get PDF
    Due to good maneuverability, UAVs and vehicles are often used for environment perception in smart cities. In order to improve the efficiency of sensor data sharing in UAV-assisted mmWave vehicular network (VN), this paper proposes a sensor data sharing method based on blockage effect identification and network coding. The concurrent sending vehicles selection method is proposed based on the availability of mmWave link, the number of target vehicles of sensor data packet, the distance between a sensor data packet and target vehicle, the number of concurrent sending vehicles, and the waiting time of sensor data packet. The construction method of the coded packet is put forward based on the status information about the existing packets of vehicles. Simulation results demonstrated that efficiency of the proposed method is superior to baseline solutions in terms of the packet loss ratio, transmission time, and packet dissemination ratio

    Spectrum cartography techniques, challenges, opportunities, and applications: A survey

    Get PDF
    The spectrum cartography finds applications in several areas such as cognitive radios, spectrum aware communications, machine-type communications, Internet of Things, connected vehicles, wireless sensor networks, and radio frequency management systems, etc. This paper presents a survey on state-of-the-art of spectrum cartography techniques for the construction of various radio environment maps (REMs). Following a brief overview on spectrum cartography, various techniques considered to construct the REMs such as channel gain map, power spectral density map, power map, spectrum map, power propagation map, radio frequency map, and interference map are reviewed. In this paper, we compare the performance of the different spectrum cartography methods in terms of mean absolute error, mean square error, normalized mean square error, and root mean square error. The information presented in this paper aims to serve as a practical reference guide for various spectrum cartography methods for constructing different REMs. Finally, some of the open issues and challenges for future research and development are discussed.publishedVersio

    Framework for Content Distribution over Wireless LANs

    Get PDF
    Wireless LAN (also called as Wi-Fi) is dominantly considered as the most pervasive technology for Intent access. Due to the low-cost of chipsets and support for high data rates, Wi-Fi has become a universal solution for ever-increasing application space which includes, video streaming, content delivery, emergency communication, vehicular communication and Internet-of-Things (IoT). Wireless LAN technology is defined by the IEEE 802.11 standard. The 802.11 standard has been amended several times over the last two decades, to incorporate the requirement of future applications. The 802.11 based Wi-Fi networks are infrastructure networks in which devices communicate through an access point. However, in 2010, Wi-Fi Alliance has released a specification to standardize direct communication in Wi-Fi networks. The technology is called Wi-Fi Direct. Wi-Fi Direct after 9 years of its release is still used for very basic services (connectivity, file transfer etc.), despite the potential to support a wide range of applications. The reason behind the limited inception of Wi-Fi Direct is some inherent shortcomings that limit its performance in dense networks. These include the issues related to topology design, such as non-optimal group formation, Group Owner selection problem, clustering in dense networks and coping with device mobility in dynamic networks. Furthermore, Wi-Fi networks also face challenges to meet the growing number of Wi Fi users. The next generation of Wi-Fi networks is characterized as ultra-dense networks where the topology changes frequently which directly affects the network performance. The dynamic nature of such networks challenges the operators to design and make optimum planifications. In this dissertation, we propose solutions to the aforementioned problems. We contributed to the existing Wi-Fi Direct technology by enhancing the group formation process. The proposed group formation scheme is backwards-compatible and incorporates role selection based on the device's capabilities to improve network performance. Optimum clustering scheme using mixed integer programming is proposed to design efficient topologies in fixed dense networks, which improves network throughput and reduces packet loss ratio. A novel architecture using Unmanned Aeriel Vehicles (UAVs) in Wi-Fi Direct networks is proposed for dynamic networks. In ultra-dense, highly dynamic topologies, we propose cognitive networks using machine-learning algorithms to predict the network changes ahead of time and self-configuring the network
    • …
    corecore