434 research outputs found

    Spectrum Sharing in Wireless Networks via QoS-Aware Secondary Multicast Beamforming

    Get PDF
    Secondary spectrum usage has the potential to considerably increase spectrum utilization. In this paper, quality-of-service (QoS)-aware spectrum underlay of a secondary multicast network is considered. A multiantenna secondary access point (AP) is used for multicast (common information) transmission to a number of secondary single-antenna receivers. The idea is that beamforming can be used to steer power towards the secondary receivers while limiting sidelobes that cause interference to primary receivers. Various optimal formulations of beamforming are proposed, motivated by different ldquocohabitationrdquo scenarios, including robust designs that are applicable with inaccurate or limited channel state information at the secondary AP. These formulations are NP-hard computational problems; yet it is shown how convex approximation-based multicast beamforming tools (originally developed without regard to primary interference constraints) can be adapted to work in a spectrum underlay context. Extensive simulation results demonstrate the effectiveness of the proposed approaches and provide insights on the tradeoffs between different design criteria

    Out-sphere decoder for non-coherent ML SIMO detection and its expected complexity

    Get PDF
    In multi-antenna communication systems, channel information is often not known at the receiver. To fully exploit the bandwidth resources of the system and ensure the practical feasibility of the receiver, the channel parameters are often estimated and then employed in the design of signal detection algorithms. However, sometimes communication can occur in an environment where learning the channel coefficients becomes infeasible. In this paper we consider the problem of maximum-likelihood (ML)-detection in singleinput multiple-output (SIMO) systems when the channel information is completely unavailable at the receiver and when the employed signalling at the transmitter is q-PSK. It is well known that finding the solution to this optimization requires solving an integer maximization of a quadratic form and is, in general, an NP hard problem. To solve it, we propose an exact algorithm based on the combination of branch and bound tree search and semi-definite program (SDP) relaxation. The algorithm resembles the standard sphere decoder except that, since we are maximizing we need to construct an upper bound at each level of the tree search. We derive an analytical upper bound on the expected complexity of the proposed algorithm

    General Rank Multiuser Downlink Beamforming With Shaping Constraints Using Real-valued OSTBC

    Full text link
    In this paper we consider optimal multiuser downlink beamforming in the presence of a massive number of arbitrary quadratic shaping constraints. We combine beamforming with full-rate high dimensional real-valued orthogonal space time block coding (OSTBC) to increase the number of beamforming weight vectors and associated degrees of freedom in the beamformer design. The original multi-constraint beamforming problem is converted into a convex optimization problem using semidefinite relaxation (SDR) which can be solved efficiently. In contrast to conventional (rank-one) beamforming approaches in which an optimal beamforming solution can be obtained only when the SDR solution (after rank reduction) exhibits the rank-one property, in our approach optimality is guaranteed when a rank of eight is not exceeded. We show that our approach can incorporate up to 79 additional shaping constraints for which an optimal beamforming solution is guaranteed as compared to a maximum of two additional constraints that bound the conventional rank-one downlink beamforming designs. Simulation results demonstrate the flexibility of our proposed beamformer design

    Estimation in Phase-Shift and Forward Wireless Sensor Networks

    Get PDF
    We consider a network of single-antenna sensors that observe an unknown deterministic parameter. Each sensor applies a phase shift to the observation and the sensors simultaneously transmit the result to a multi-antenna fusion center (FC). Based on its knowledge of the wireless channel to the sensors, the FC calculates values for the phase factors that minimize the variance of the parameter estimate, and feeds this information back to the sensors. The use of a phase-shift-only transmission scheme provides a simplified analog implementation at the sensor, and also leads to a simpler algorithm design and performance analysis. We propose two algorithms for this problem, a numerical solution based on a relaxed semidefinite programming problem, and a closed-form solution based on the analytic constant modulus algorithm. Both approaches are shown to provide performance close to the theoretical bound. We derive asymptotic performance analyses for cases involving large numbers of sensors or large numbers of FC antennas, and we also study the impact of phase errors at the sensor transmitters. Finally, we consider the sensor selection problem, in which only a subset of the sensors is chosen to send their observations to the FC.Comment: 28 pages, 5 figures, accepted by IEEE Transactions on Signal Processing, Apr. 201
    • …
    corecore