2,789,060 research outputs found

    Data depth and floating body

    Full text link
    Little known relations of the renown concept of the halfspace depth for multivariate data with notions from convex and affine geometry are discussed. Halfspace depth may be regarded as a measure of symmetry for random vectors. As such, the depth stands as a generalization of a measure of symmetry for convex sets, well studied in geometry. Under a mild assumption, the upper level sets of the halfspace depth coincide with the convex floating bodies used in the definition of the affine surface area for convex bodies in Euclidean spaces. These connections enable us to partially resolve some persistent open problems regarding theoretical properties of the depth

    OctNetFusion: Learning Depth Fusion from Data

    Full text link
    In this paper, we present a learning based approach to depth fusion, i.e., dense 3D reconstruction from multiple depth images. The most common approach to depth fusion is based on averaging truncated signed distance functions, which was originally proposed by Curless and Levoy in 1996. While this method is simple and provides great results, it is not able to reconstruct (partially) occluded surfaces and requires a large number frames to filter out sensor noise and outliers. Motivated by the availability of large 3D model repositories and recent advances in deep learning, we present a novel 3D CNN architecture that learns to predict an implicit surface representation from the input depth maps. Our learning based method significantly outperforms the traditional volumetric fusion approach in terms of noise reduction and outlier suppression. By learning the structure of real world 3D objects and scenes, our approach is further able to reconstruct occluded regions and to fill in gaps in the reconstruction. We demonstrate that our learning based approach outperforms both vanilla TSDF fusion as well as TV-L1 fusion on the task of volumetric fusion. Further, we demonstrate state-of-the-art 3D shape completion results.Comment: 3DV 2017, https://github.com/griegler/octnetfusio

    Depth-based inference for functional data

    Get PDF
    We propose robust inference tools for functional data based on the notion of depth for curves. We extend the ideas of trimmed regions, contours and central regions to functions and study their structural properties and asymptotic behavior. Next, we introduce a scale curve to describe dispersion in a sample of functions. The computational burden of these techniques is not heavy and so they are also adequate to analyze high-dimensional data. All these inferential methods are applied to different real data sets

    Depth-based classification for functional data

    Get PDF
    Classification is an important task when data are curves. Recently, the notion of statistical depth has been extended to deal with functional observations. In this paper, we propose robust procedures based on the concept of depth to classify curves. These techniques are applied to a real data example. An extensive simulation study with contaminated models illustrates the good robustness properties of these depth-based classification methods

    A half-graph depth for functional data

    Get PDF
    A recent and highly attractive area of research in statistics is the analysis of functional data. In this paper a new definition of depth for functional observations is introduced based on the notion of "half-graph" of a curve. It has computational advantages with respect to other concepts of depth previously proposed. The half-graph depth provides a natural criterion to measure the centrality of a function within a sample of curves. Based on this depth a sample of curves can be ordered from the center outward and L-statistics are defined. The properties of the half-graph depth, such as the consistency and uniform convergence, are established. A simulation study shows the robustness of this new definition of depth when the curves are contaminated. Finally real data examples are analyzed
    corecore