4,619 research outputs found

    Pozicioniranje i praćenje pješaka u zatvorenom prostoru koristeći senzore pametnih telefona, otkrivanje koraka i algoritam za geokodiranje

    Get PDF
    The paper deals with indoor navigation using inertial sensors (accelerometers, gyroscopes, etc.) built in a smartphone. The main disadvantage of the use of inertial sensors is the accuracy, which rapidly decreases with the increasing time of the measurement. The reason of the deteriorating accuracy is the presence of errors in inertial measurements, which are accumulated in the integration process. The paper describes the determination of a pedestrian trajectory using step detection method, which is improved with utilization of the adaptive step length estimation algorithm. This algorithm reflects the change of the step length with different types of movement. The proposal of the data processing uses information from floormap, what allows the verification of the pedestrian position and detects the collision of the trajectory with the floormap. The proposed algorithm significantly increases the accuracy of the resulting trajectory. Another extension of the proposed algorithm is the implementation of the barometer measurements for determination of the height differences. This fact allows change the floor in a multi-storey buildings. The experimental measurement was realized with a smartphone Samsung Galaxy S4.Rad se bavi navigacijom u zatvorenom prostoru koristeći inercijalne senzore (akcelerometre, žiroskope, itd.) ugrađene u pametne telefone. Najveći nedostatak korištenja inercijalnih senzora je netočnost koja se ubrzano povećava produljenjem vremena mjerenja. Razlog smanjenja točnosti je prisutnost pogrešaka inercijalnih mjerenja koje se akumuliraju kroz proces integracije. Rad opisuje određivanje putanje pješaka koristeći metodu praćenja koraka koja je poboljšana korištenjem algoritma za procjenu prilagodljive duljine koraka. Ovaj algoritam odražava promjene u duljini koraka s različitim vrstama kretanja. Prijedlog obrade podataka koristi informacije iz tlocrta katova što omogućava potvrdu položaja pješaka i otkriva koliziju putanje s tlocrtom. Predloženi algoritam znatno povećava točnost dobivene putanje. Drugi dodatak predloženog algoritma se odnosi na upotrebu barometarskih mjerenja pri određivanju visinskih razlika. Ova činjenica omogućava promjenu kata u višekatnoj zgradi. Eksperimentalno mjerenje je izvršeno uz pomoć pametnog telefona Samsung Galaxy S4

    Complete Simulation of an IEEE 802.11 Wireless Network using a Full Wave Electromagnetic Tool Dynamically Coupled to a RF System Simulator

    Get PDF
    The purpose of this study is to fully evaluate a short range IEEE 802.11g channel at 2.4 GHz frequency by dynamic linking Ansys HFSS, a full wave electromagnet tool, and Ansys Designer, a system level design simulator. The study presented in paper shows the integration of a 3D field solver and a circuit solver that enables the calculation of radiation patterns, electric field plots, bit error rate, constellation plots while incorporates the actual transmitter and receiver antennas and devices as well as TX/RX system with numerous modulation schemes. Multipath effects are also considered because the entire physical environment is modeled. Frequency and time domain responses are seamlessly combined in order to yield a complete response of the entire system. The scenario of the WiFi network is a room comprised of a router, a notebook and a phone. The concepts shown in this paper can be applied to Zigbee, Bluetooth, WiMax and many other wireless network types

    Edge inference for UWB ranging error correction using autoencoders

    Get PDF
    Indoor localization knows many applications, such as industry 4.0, warehouses, healthcare, drones, etc., where high accuracy becomes more critical than ever. Recent advances in ultra-wideband localization systems allow high accuracies for multiple active users in line-of-sight environments, while they still introduce errors above 300 mm in non-line-of-sight environments due to multi-path effects. Current work tries to improve the localization accuracy of ultra-wideband through offline error correction approaches using popular machine learning techniques. However, these techniques are still limited to simple environments with few multi-path effects and focus on offline correction. With the upcoming demand for high accuracy and low latency indoor localization systems, there is a need to deploy (online) efficient error correction techniques with fast response times in dynamic and complex environments. To address this, we propose (i) a novel semi-supervised autoencoder-based machine learning approach for improving ranging accuracy of ultra-wideband localization beyond the limitations of current improvements while aiming for performance improvements and a small memory footprint and (ii) an edge inference architecture for online UWB ranging error correction. As such, this paper allows the design of accurate localization systems by using machine learning for low-cost edge devices. Compared to a deep neural network (as state-of-the-art, with a baseline error of 75 mm) the proposed autoencoder achieves a 29% higher accuracy. The proposed approach leverages robust and accurate ultra-wideband localization, which reduces the errors from 214 mm without correction to 58 mm with correction. Validation of edge inference using the proposed autoencoder on a NVIDIA Jetson Nano demonstrates significant uplink bandwidth savings and allows up to 20 rapidly ranging anchors per edge GPU

    Providing location everywhere

    Get PDF
    Anacleto R., Figueiredo L., Novais P., Almeida A., Providing Location Everywhere, in Progress in Artificial Intelligence, Antunes L., Sofia Pinto H. (eds), Lecture Notes in Artificial Intelligence 7026, Springer-Verlag, ISBN 978-3-540-24768-2, (Proceedings of the 15th Portuguese conference on Artificial Intelligence - EPIA 2011, Lisboa, Portugal), pp 15-28, 2011.The ability to locate an individual is an essential part of many applications, specially the mobile ones. Obtaining this location in an open environment is relatively simple through GPS (Global Positioning System), but indoors or even in dense environments this type of location system doesn’t provide a good accuracy. There are already systems that try to suppress these limitations, but most of them need the existence of a structured environment to work. Since Inertial Navigation Systems (INS) try to suppress the need of a structured environment we propose an INS based on Micro Electrical Mechanical Systems (MEMS) that is capable of, in real time, compute the position of an individual everywhere

    A Wireless Sensor Network Based Personnel Positioning Scheme in Coal Mines with Blind Areas

    Get PDF
    This paper proposes a novel personnel positioning scheme for a tunnel network with blind areas, which compared with most existing schemes offers both low-cost and high-precision. Based on the data models of tunnel networks, measurement networks and mobile miners, the global positioning method is divided into four steps: (1) calculate the real time personnel location in local areas using a location engine, and send it to the upper computer through the gateway; (2) correct any localization errors resulting from the underground tunnel environmental interference; (3) determine the global three-dimensional position by coordinate transformation; (4) estimate the personnel locations in the blind areas. A prototype system constructed to verify the positioning performance shows that the proposed positioning system has good reliability, scalability, and positioning performance. In particular, the static localization error of the positioning system is less than 2.4 m in the underground tunnel environment and the moving estimation error is below 4.5 m in the corridor environment. The system was operated continuously over three months without any failures

    Map matching by using inertial sensors: literature review

    Get PDF
    This literature review aims to clarify what is known about map matching by using inertial sensors and what are the requirements for map matching, inertial sensors, placement and possible complementary position technology. The target is to develop a wearable location system that can position itself within a complex construction environment automatically with the aid of an accurate building model. The wearable location system should work on a tablet computer which is running an augmented reality (AR) solution and is capable of track and visualize 3D-CAD models in real environment. The wearable location system is needed to support the system in initialization of the accurate camera pose calculation and automatically finding the right location in the 3D-CAD model. One type of sensor which does seem applicable to people tracking is inertial measurement unit (IMU). The IMU sensors in aerospace applications, based on laser based gyroscopes, are big but provide a very accurate position estimation with a limited drift. Small and light units such as those based on Micro-Electro-Mechanical (MEMS) sensors are becoming very popular, but they have a significant bias and therefore suffer from large drifts and require method for calibration like map matching. The system requires very little fixed infrastructure, the monetary cost is proportional to the number of users, rather than to the coverage area as is the case for traditional absolute indoor location systems.Siirretty Doriast

    User Experience Enhancement on Smartphones using Wireless Communication Technologies

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·정보공학부, 2020. 8. 박세웅.Recently, various sensors as well as wireless communication technologies such as Wi-Fi and Bluetooth Low Energy (BLE) have been equipped with smartphones. In addition, in many cases, users use a smartphone while on the move, so if a wireless communication technologies and various sensors are used for a mobile user, a better user experience can be provided. For example, when a user moves while using Wi-Fi, the user experience can be improved by providing a seamless Wi-Fi service. In addition, it is possible to provide a special service such as indoor positioning or navigation by estimating the users mobility in an indoor environment, and additional services such as location-based advertising and payment systems can also be provided. Therefore, improving the user experience by using wireless communication technology and smartphones sensors is considered to be an important research field in the future. In this dissertation, we propose three systems that can improve the user experience or convenience by usingWi-Fi, BLE, and smartphones sensors: (i) BLEND: BLE beacon-aided fast Wi-Fi handoff for smartphones, (ii) PYLON: Smartphone based Indoor Path Estimation and Localization without Human Intervention, (iii) FINISH: Fully-automated Indoor Navigation using Smartphones with Zero Human Assistance. First, we propose fast handoff scheme called BLEND exploiting BLE as secondary radio. We conduct detailed analysis of the sticky client problem on commercial smartphones with experiment and close examination of Android source code. We propose BLEND, which exploits BLE modules to provide smartphones with prior knowledge of the presence and information of APs operating at 2.4 and 5 GHz Wi-Fi channels. BLEND operating with only application requires no hardware and Android source code modification of smartphones.We prototype BLEND with commercial smartphones and evaluate the performance in real environment. Our measurement results demonstrate that BLEND significantly improves throughput and video bitrate by up to 61% and 111%, compared to a commercial Android application, respectively, with negligible energy overhead. Second, we design a path estimation and localization system, termed PYLON, which is plug-and-play on Android smartphones. PYLON includes a novel landmark correction scheme that leverages real doors of indoor environments consisting of floor plan mapping, door passing time detection and correction. It operates without any user intervention. PYLON relaxes some requirements for localization systems. It does not require any modifications to hardware or software of smartphones, and the initial location of WiFi APs, BLE beacons, and users. We implement PYLON on five Android smartphones and evaluate it on two office buildings with the help of three participants to prove applicability and scalability. PYLON achieves very high floor plan mapping accuracy with a low localization error. Finally, We design a fully-automated navigation system, termed FINISH, which addresses the problems of existing previous indoor navigation systems. FINISH generates the radio map of an indoor building based on the localization system to determine the initial location of the user. FINISH relaxes some requirements for current indoor navigation systems. It does not require any human assistance to provide navigation instructions. In addition, it is plug-and-play on Android smartphones. We implement FINISH on five Android smartphones and evaluate it on five floors of an office building with the help of multiple users to prove applicability and scalability. FINISH determines the location of the user with extremely high accuracy with in one step. In summary, we propose systems that enhance the users convenience and experience by utilizing wireless infrastructures such as Wi-Fi and BLE and various smartphones sensors such as accelerometer, gyroscope, and barometer equipped in smartphones. Systems are implemented on commercial smartphones to verify the performance through experiments. As a result, systems show the excellent performance that can enhance the users experience.1 Introduction 1 1.1 Motivation 1 1.2 Overview of Existing Approaches 3 1.2.1 Wi-Fi handoff for smartphones 3 1.2.2 Indoor path estimation and localization 4 1.2.3 Indoor navigation 5 1.3 Main Contributions 7 1.3.1 BLEND: BLE Beacon-aided Fast Handoff for Smartphones 7 1.3.2 PYLON: Smartphone Based Indoor Path Estimation and Localization with Human Intervention 8 1.3.3 FINISH: Fully-automated Indoor Navigation using Smartphones with Zero Human Assistance 9 1.4 Organization of Dissertation 10 2 BLEND: BLE Beacon-Aided FastWi-Fi Handoff for Smartphones 11 2.1 Introduction 11 2.2 Related Work 14 2.2.1 Wi-Fi-based Handoff 14 2.2.2 WPAN-aided AP Discovery 15 2.3 Background 16 2.3.1 Handoff Procedure in IEEE 802.11 16 2.3.2 BSS Load Element in IEEE 802.11 16 2.3.3 Bluetooth Low Energy 17 2.4 Sticky Client Problem 17 2.4.1 Sticky Client Problem of Commercial Smartphone 17 2.4.2 Cause of Sticky Client Problem 20 2.5 BLEND: Proposed Scheme 21 2.5.1 Advantages and Necessities of BLE as Secondary Low-Power Radio 21 2.5.2 Overall Architecture 22 2.5.3 AP Operation 23 2.5.4 Smartphone Operation 24 2.5.5 Verification of aTH estimation 28 2.6 Performance Evaluation 30 2.6.1 Implementation and Measurement Setup 30 2.6.2 Saturated Traffic Scenario 31 2.6.3 Video Streaming Scenario 35 2.7 Summary 38 3 PYLON: Smartphone based Indoor Path Estimation and Localization without Human Intervention 41 3.1 Introduction 41 3.2 Background and Related Work 44 3.2.1 Infrastructure-Based Localization 44 3.2.2 Fingerprint-Based Localization 45 3.2.3 Model-Based Localization 45 3.2.4 Dead Reckoning 46 3.2.5 Landmark-Based Localization 47 3.2.6 Simultaneous Localization and Mapping (SLAM) 47 3.3 System Overview 48 3.3.1 Notable RSSI Signature 49 3.3.2 Smartphone Operation 50 3.3.3 Server Operation 51 3.4 Path Estimation 52 3.4.1 Step Detection 52 3.4.2 Step Length Estimation 54 3.4.3 Walking Direction 54 3.4.4 Location Update 55 3.5 Landmark Correction Part 1: Virtual Room Generation 56 3.5.1 RSSI Stacking Difference 56 3.5.2 Virtual Room Generation 57 3.5.3 Virtual Graph Generation 59 3.5.4 Physical Graph Generation 60 3.6 Landmark Correction Part 2: From Floor Plan Mapping to Path Correction 60 3.6.1 Candidate Graph Generation 60 3.6.2 Backbone Node Mapping 62 3.6.3 Dead-end Node Mapping 65 3.6.4 Final Candidate Graph Selection 66 3.6.5 Door Passing Time Detection 68 3.6.6 Path Correction 70 3.7 Particle Filter 71 3.8 Performance Evaluation 73 3.8.1 Implementation and Measurement Setup 73 3.8.2 Step Detection Accuracy 77 3.8.3 Floor Plan Mapping Accuracy 77 3.8.4 Door Passing Time 78 3.8.5 Walking Direction and Localization Performance 81 3.8.6 Impact of WiFi AP and BLE Beacon Number 84 3.8.7 Impact of Walking Distance and Speed 84 3.8.8 Performance on Different Areas 87 3.9 Summary 87 4 FINISH: Fully-automated Indoor Navigation using Smartphones with Zero Human Assistance 91 4.1 Introduction 91 4.2 Related Work 92 4.2.1 Localization-based Navigation System 92 4.2.2 Peer-to-peer Navigation System 93 4.3 System Overview 93 4.3.1 System Architecture 93 4.3.2 An Example for Navigation 95 4.4 Level Change Detection and Floor Decision 96 4.4.1 Level Change Detection 96 4.5 Real-time navigation 97 4.5.1 Initial Floor and Location Decision 97 4.5.2 Orientation Adjustment 98 4.5.3 Shortest Path Estimation 99 4.6 Performance Evaluation 99 4.6.1 Initial Location Accuracy 99 4.6.2 Real-Time Navigation Accuracy 100 4.7 Summary 101 5 Conclusion 102 5.1 Research Contributions 102 5.2 Future Work 103 Abstract (In Korean) 118 감사의 글Docto
    corecore