456 research outputs found

    Scalable and perceptual audio compression

    Get PDF
    This thesis deals with scalable perceptual audio compression. Two scalable perceptual solutions as well as a scalable to lossless solution are proposed and investigated. One of the scalable perceptual solutions is built around sinusoidal modelling of the audio signal whilst the other is built on a transform coding paradigm. The scalable coders are shown to scale both in a waveform matching manner as well as a psychoacoustic manner. In order to measure the psychoacoustic scalability of the systems investigated in this thesis, the similarity between the original signal\u27s psychoacoustic parameters and that of the synthesized signal are compared. The psychoacoustic parameters used are loudness, sharpness, tonahty and roughness. This analysis technique is a novel method used in this thesis and it allows an insight into the perceptual distortion that has been introduced by any coder analyzed in this manner

    Frame Theory for Signal Processing in Psychoacoustics

    Full text link
    This review chapter aims to strengthen the link between frame theory and signal processing tasks in psychoacoustics. On the one side, the basic concepts of frame theory are presented and some proofs are provided to explain those concepts in some detail. The goal is to reveal to hearing scientists how this mathematical theory could be relevant for their research. In particular, we focus on frame theory in a filter bank approach, which is probably the most relevant view-point for audio signal processing. On the other side, basic psychoacoustic concepts are presented to stimulate mathematicians to apply their knowledge in this field

    On the data hiding theory and multimedia content security applications

    Get PDF
    This dissertation is a comprehensive study of digital steganography for multimedia content protection. With the increasing development of Internet technology, protection and enforcement of multimedia property rights has become a great concern to multimedia authors and distributors. Watermarking technologies provide a possible solution for this problem. The dissertation first briefly introduces the current watermarking schemes, including their applications in video,, image and audio. Most available embedding schemes are based on direct Spread Sequence (SS) modulation. A small value pseudo random signature sequence is embedded into the host signal and the information is extracted via correlation. The correlation detection problem is discussed at the beginning. It is concluded that the correlator is not optimum in oblivious detection. The Maximum Likelihood detector is derived and some feasible suboptimal detectors are also analyzed. Through the calculation of extraction Bit Error Rate (BER), it is revealed that the SS scheme is not very efficient due to its poor host noise suppression. The watermark domain selection problem is addressed subsequently. Some implications on hiding capacity and reliability are also studied. The last topic in SS modulation scheme is the sequence selection. The relationship between sequence bandwidth and synchronization requirement is detailed in the work. It is demonstrated that the white sequence commonly used in watermarking may not really boost watermark security. To address the host noise suppression problem, the hidden communication is modeled as a general hypothesis testing problem and a set partitioning scheme is proposed. Simulation studies and mathematical analysis confirm that it outperforms the SS schemes in host noise suppression. The proposed scheme demonstrates improvement over the existing embedding schemes. Data hiding in audio signals are explored next. The audio data hiding is believed a more challenging task due to the human sensitivity to audio artifacts and advanced feature of current compression techniques. The human psychoacoustic model and human music understanding are also covered in the work. Then as a typical audio perceptual compression scheme, the popular MP3 compression is visited in some length. Several schemes, amplitude modulation, phase modulation and noise substitution are presented together with some experimental results. As a case study, a music bitstream encryption scheme is proposed. In all these applications, human psychoacoustic model plays a very important role. A more advanced audio analysis model is introduced to reveal implications on music understanding. In the last part, conclusions and future research are presented

    Temporal Filterbanks in Cochlear Implant Hearing and Deep Learning Simulations

    Get PDF
    The masking phenomenon has been used to investigate cochlear excitation patterns and has even motivated audio coding formats for compression and speech processing. For example, cochlear implants rely on masking estimates to filter incoming sound signals onto an array. Historically, the critical band theory has been the mainstay of psychoacoustic theory. However, masked threshold shifts in cochlear implant users show a discrepancy between the observed critical bandwidths, suggesting separate roles for place location and temporal firing patterns. In this chapter, we will compare discrimination tasks in the spectral domain (e.g., power spectrum models) and the temporal domain (e.g., temporal envelope) to introduce new concepts such as profile analysis, temporal critical bands, and transition bandwidths. These recent findings violate the fundamental assumptions of the critical band theory and could explain why the masking curves of cochlear implant users display spatial and temporal characteristics that are quite unlike that of acoustic stimulation. To provide further insight, we also describe a novel analytic tool based on deep neural networks. This deep learning system can simulate many aspects of the auditory system, and will be used to compute the efficiency of spectral filterbanks (referred to as “FBANK”) and temporal filterbanks (referred to as “TBANK”)

    Estimation and Modeling Problems in Parametric Audio Coding

    Get PDF
    • …
    corecore