2,479 research outputs found

    Data clustering using a model granular magnet

    Full text link
    We present a new approach to clustering, based on the physical properties of an inhomogeneous ferromagnet. No assumption is made regarding the underlying distribution of the data. We assign a Potts spin to each data point and introduce an interaction between neighboring points, whose strength is a decreasing function of the distance between the neighbors. This magnetic system exhibits three phases. At very low temperatures it is completely ordered; all spins are aligned. At very high temperatures the system does not exhibit any ordering and in an intermediate regime clusters of relatively strongly coupled spins become ordered, whereas different clusters remain uncorrelated. This intermediate phase is identified by a jump in the order parameters. The spin-spin correlation function is used to partition the spins and the corresponding data points into clusters. We demonstrate on three synthetic and three real data sets how the method works. Detailed comparison to the performance of other techniques clearly indicates the relative success of our method.Comment: 46 pages, postscript, 15 ps figures include

    Dynamics of Air-Fluidized Granular System Measured by the Modulated Gradient Spin-echo

    Full text link
    The power spectrum of displacement fluctuation of beads in the air-fluidized granular system is measured by a novel NMR technique of modulated gradient spin-echo. The results of measurement together with the related spectrum of the velocity fluctuation autocorrelation function fit well to an empiric formula based on to the model of bead caging between nearest neighbours; the cage breaks up after a few collisions \cite{Menon1}. The fit yields the characteristic collision time, the size of bead caging and the diffusion-like constant for different degrees of system fluidization. The resulting mean squared displacement increases proportionally to the second power of time in the short-time ballistic regime and increases linearly with time in the long-time diffusion regime as already confirmed by other experiments and simulations.Comment: 4 figures. Submited to Physical Review Letters, April 200

    Singular Scaling Functions in Clustering Phenomena

    Full text link
    We study clustering in a stochastic system of particles sliding down a fluctuating surface in one and two dimensions. In steady state, the density-density correlation function is a scaling function of separation and system size.This scaling function is singular for small argument -- it exhibits a cusp singularity for particles with mutual exclusion, and a divergence for noninteracting particles. The steady state is characterized by giant fluctuations which do not damp down in the thermodynamic limit. The autocorrelation function is a singular scaling function of time and system size. The scaling properties are surprisingly similar to those for particles moving in a quenched disordered environment that results if the surface is frozen.Comment: 8 pages, 3 figures, Invited talk delivered at Statphys 23, Genova, July 200

    A Q-Ising model application for linear-time image segmentation

    Full text link
    A computational method is presented which efficiently segments digital grayscale images by directly applying the Q-state Ising (or Potts) model. Since the Potts model was first proposed in 1952, physicists have studied lattice models to gain deep insights into magnetism and other disordered systems. For some time, researchers have realized that digital images may be modeled in much the same way as these physical systems (i.e., as a square lattice of numerical values). A major drawback in using Potts model methods for image segmentation is that, with conventional methods, it processes in exponential time. Advances have been made via certain approximations to reduce the segmentation process to power-law time. However, in many applications (such as for sonar imagery), real-time processing requires much greater efficiency. This article contains a description of an energy minimization technique that applies four Potts (Q-Ising) models directly to the image and processes in linear time. The result is analogous to partitioning the system into regions of four classes of magnetism. This direct Potts segmentation technique is demonstrated on photographic, medical, and acoustic images.Comment: 7 pages, 8 figures, revtex, uses subfigure.sty. Central European Journal of Physics, in press (2010

    Nonequilibrium glass transitions in driven and active matter

    Full text link
    The glass transition, extensively studied in dense fluids, polymers, or colloids, corresponds to a dramatic evolution of equilibrium transport coefficients upon a modest change of control parameter, like temperature or pressure. A similar phenomenology is found in many systems evolving far from equilibrium, such as driven granular media, active and living matter. While many theories compete to describe the glass transition at thermal equilibrium, very little is understood far from equilibrium. Here, we solve the dynamics of a specific, yet representative, class of glass models in the presence of nonthermal driving forces and energy dissipation, and show that a dynamic arrest can take place in these nonequilibrium conditions. While the location of the transition depends on the specifics of the driving mechanisms, important features of the glassy dynamics are insensitive to details, suggesting that an `effective' thermal dynamics generically emerges at long time scales in nonequilibrium systems close to dynamic arrest.Comment: 7 pages, 2 fig
    corecore