63,387 research outputs found

    Genetic Programming Approach for Classification Problem using GPU

    Get PDF
    Genetic programming (GP) is a machine learning technique that is based on the evolution of computer programs using a genetic algorithm. Genetic programming have proven to be a good technique for solving data set classification problems but at high computational cost. The objectives of this research is to accelerate the execution of the classification algorithms by proposing a general model of execution in GPU of the adjustment function of the individuals of the population. The computation times of each of the phases of the evolutionary process and the operation of the model of parallel programming in GPU were studied. Genetic programming is interesting to parallelize from the perspective of evolving a population of individuals in parallel

    Genetic Programming Approach for Classification Problem using GPU

    Get PDF
    Genetic programming (GP) is a machine learning technique that is based on the evolution of computer programs using a genetic algorithm. Genetic programming have proven to be a good technique for solving data set classification problems but at high computational cost. The objectives of this research is to accelerate the execution of the classification algorithms by proposing a general model of execution in GPU of the adjustment function of the individuals of the population. The computation times of each of the phases of the evolutionary process and the operation of the model of parallel programming in GPU were studied. Genetic programming is interesting to parallelize from the perspective of evolving a population of individuals in paralle

    A Genetic Programming Framework for Two Data Mining Tasks: Classification and Generalized Rule Induction

    Get PDF
    This paper proposes a genetic programming (GP) framework for two major data mining tasks, namely classification and generalized rule induction. The framework emphasizes the integration between a GP algorithm and relational database systems. In particular, the fitness of individuals is computed by submitting SQL queries to a (parallel) database server. Some advantages of this integration from a data mining viewpoint are scalability, data-privacy control and automatic parallelization

    Decision Making in the Medical Domain: Comparing the Effectiveness of GP-Generated Fuzzy Intelligent Structures

    Get PDF
    ABSTRACT: In this work, we examine the effectiveness of two intelligent models in medical domains. Namely, we apply grammar-guided genetic programming to produce fuzzy intelligent structures, such as fuzzy rule-based systems and fuzzy Petri nets, in medical data mining tasks. First, we use two context-free grammars to describe fuzzy rule-based systems and fuzzy Petri nets with genetic programming. Then, we apply cellular encoding in order to express the fuzzy Petri nets with arbitrary size and topology. The models are examined thoroughly in four real-world medical data sets. Results are presented in detail and the competitive advantages and drawbacks of the selected methodologies are discussed, in respect to the nature of each application domain. Conclusions are drawn on the effectiveness and efficiency of the presented approach

    Exploiting Tournament Selection for Efficient Parallel Genetic Programming

    Full text link
    Genetic Programming (GP) is a computationally intensive technique which is naturally parallel in nature. Consequently, many attempts have been made to improve its run-time from exploiting highly parallel hardware such as GPUs. However, a second methodology of improving the speed of GP is through efficiency techniques such as subtree caching. However achieving parallel performance and efficiency is a difficult task. This paper will demonstrate an efficiency saving for GP compatible with the harnessing of parallel CPU hardware by exploiting tournament selection. Significant efficiency savings are demonstrated whilst retaining the capability of a high performance parallel implementation of GP. Indeed, a 74% improvement in the speed of GP is achieved with a peak rate of 96 billion GPop/s for classification type problems

    An Architecture-Altering and Training Methodology for Neural Logic Networks: Application in the Banking Sector

    Get PDF
    Artificial neural networks have been universally acknowledged for their ability on constructing forecasting and classifying systems. Among their desirable features, it has always been the interpretation of their structure, aiming to provide further knowledge for the domain experts. A number of methodologies have been developed for this reason. One such paradigm is the neural logic networks concept. Neural logic networks have been especially designed in order to enable the interpretation of their structure into a number of simple logical rules and they can be seen as a network representation of a logical rule base. Although powerful by their definition in this context, neural logic networks have performed poorly when used in approaches that required training from data. Standard training methods, such as the back-propagation, require the network’s synapse weight altering, which destroys the network’s interpretability. The methodology in this paper overcomes these problems and proposes an architecture-altering technique, which enables the production of highly antagonistic solutions while preserving any weight-related information. The implementation involves genetic programming using a grammar-guided training approach, in order to provide arbitrarily large and connected neural logic networks. The methodology is tested in a problem from the banking sector with encouraging results

    Genetic Algorithm Modeling with GPU Parallel Computing Technology

    Get PDF
    We present a multi-purpose genetic algorithm, designed and implemented with GPGPU / CUDA parallel computing technology. The model was derived from a multi-core CPU serial implementation, named GAME, already scientifically successfully tested and validated on astrophysical massive data classification problems, through a web application resource (DAMEWARE), specialized in data mining based on Machine Learning paradigms. Since genetic algorithms are inherently parallel, the GPGPU computing paradigm has provided an exploit of the internal training features of the model, permitting a strong optimization in terms of processing performances and scalability.Comment: 11 pages, 2 figures, refereed proceedings; Neural Nets and Surroundings, Proceedings of 22nd Italian Workshop on Neural Nets, WIRN 2012; Smart Innovation, Systems and Technologies, Vol. 19, Springe
    • …
    corecore