4,175 research outputs found

    Parallel Architectures for Planetary Exploration Requirements (PAPER)

    Get PDF
    The Parallel Architectures for Planetary Exploration Requirements (PAPER) project is essentially research oriented towards technology insertion issues for NASA's unmanned planetary probes. It was initiated to complement and augment the long-term efforts for space exploration with particular reference to NASA/LaRC's (NASA Langley Research Center) research needs for planetary exploration missions of the mid and late 1990s. The requirements for space missions as given in the somewhat dated Advanced Information Processing Systems (AIPS) requirements document are contrasted with the new requirements from JPL/Caltech involving sensor data capture and scene analysis. It is shown that more stringent requirements have arisen as a result of technological advancements. Two possible architectures, the AIPS Proof of Concept (POC) configuration and the MAX Fault-tolerant dataflow multiprocessor, were evaluated. The main observation was that the AIPS design is biased towards fault tolerance and may not be an ideal architecture for planetary and deep space probes due to high cost and complexity. The MAX concepts appears to be a promising candidate, except that more detailed information is required. The feasibility for adding neural computation capability to this architecture needs to be studied. Key impact issues for architectural design of computing systems meant for planetary missions were also identified

    On the Energy Efficiency of MapReduce Shuffling Operations in Data Centers

    Get PDF
    This paper aims to quantitatively measure the impact of different data centers networking topologies on the performance and energy efficiency of shuffling operations in MapReduce. Mixed Integer Linear Programming (MILP) models are utilized to optimize the shuffling in several data center topologies with electronic, hybrid, and all-optical switching while maximizing the throughput and reducing the power consumption. The results indicate that the networking topology has a significant impact on the performance of MapReduce. They also indicate that with comparable performance, optical-based data centers can achieve an average of 54% reduction in the energy consumption when compared to electronic switching data centers

    A Survey on Communication Networks for Electric System Automation

    Get PDF
    Published in Computer Networks 50 (2006) 877–897, an Elsevier journal. The definitive version of this publication is available from Science Direct. Digital Object Identifier:10.1016/j.comnet.2006.01.005In today’s competitive electric utility marketplace, reliable and real-time information become the key factor for reliable delivery of power to the end-users, profitability of the electric utility and customer satisfaction. The operational and commercial demands of electric utilities require a high-performance data communication network that supports both existing functionalities and future operational requirements. In this respect, since such a communication network constitutes the core of the electric system automation applications, the design of a cost-effective and reliable network architecture is crucial. In this paper, the opportunities and challenges of a hybrid network architecture are discussed for electric system automation. More specifically, Internet based Virtual Private Networks, power line communications, satellite communications and wireless communications (wireless sensor networks, WiMAX and wireless mesh networks) are described in detail. The motivation of this paper is to provide a better understanding of the hybrid network architecture that can provide heterogeneous electric system automation application requirements. In this regard, our aim is to present a structured framework for electric utilities who plan to utilize new communication technologies for automation and hence, to make the decision making process more effective and direct.This work was supported by NEETRAC under Project #04-157

    Digital system bus integrity

    Get PDF
    This report summarizes and describes the results of a study of current or emerging multiplex data buses as applicable to digital flight systems, particularly with regard to civil aircraft. Technology for pre-1995 and post-1995 timeframes has been delineated and critiqued relative to the requirements envisioned for those periods. The primary emphasis has been an assured airworthiness of the more prevalent type buses, with attention to attributes such as fault tolerance, environmental susceptibility, and problems under continuing investigation. Additionally, the capacity to certify systems relying on such buses has been addressed
    • …
    corecore