794 research outputs found

    Integrating Pretrained ASR and LM to Perform Sequence Generation for Spoken Language Understanding

    Full text link
    There has been an increased interest in the integration of pretrained speech recognition (ASR) and language models (LM) into the SLU framework. However, prior methods often struggle with a vocabulary mismatch between pretrained models, and LM cannot be directly utilized as they diverge from its NLU formulation. In this study, we propose a three-pass end-to-end (E2E) SLU system that effectively integrates ASR and LM subnetworks into the SLU formulation for sequence generation tasks. In the first pass, our architecture predicts ASR transcripts using the ASR subnetwork. This is followed by the LM subnetwork, which makes an initial SLU prediction. Finally, in the third pass, the deliberation subnetwork conditions on representations from the ASR and LM subnetworks to make the final prediction. Our proposed three-pass SLU system shows improved performance over cascaded and E2E SLU models on two benchmark SLU datasets, SLURP and SLUE, especially on acoustically challenging utterances.Comment: Accepted at INTERSPEECH 202

    Improving Automatic Speech Recognition on Endangered Languages

    Get PDF
    As the world moves towards a more globalized scenario, it has brought along with it the extinction of several languages. It has been estimated that over the next century, over half of the world\u27s languages will be extinct, and an alarming 43% of the world\u27s languages are at different levels of endangerment or extinction already. The survival of many of these languages depends on the pressure imposed on the dwindling speakers of these languages. Often there is a strong correlation between endangered languages and the number and quality of recordings and documentations of each. But why do we care about preserving these less prevalent languages? The behavior of cultures is often expressed in the form of speech via one\u27s native language. The memories, ideas, major events, practices, cultures and lessons learnt, both individual as well as the community\u27s, are all communicated to the outside world via language. So, language preservation is crucial to understanding the behavior of these communities. Deep learning models have been shown to dramatically improve speech recognition accuracy but require large amounts of labelled data. Unfortunately, resource constrained languages typically fall short of the necessary data for successful training. To help alleviate the problem, data augmentation techniques fabricate many new samples from each sample. The aim of this master\u27s thesis is to examine the effect of different augmentation techniques on speech recognition of resource constrained languages. The augmentation methods being experimented with are noise augmentation, pitch augmentation, speed augmentation as well as voice transformation augmentation using Generative Adversarial Networks (GANs). This thesis also examines the effectiveness of GANs in voice transformation and its limitations. The information gained from this study will further augment the collection of data, specifically, in understanding the conditions required for the data to be collected in, so that GANs can effectively perform voice transformation. Training of the original data on the Deep Speech model resulted in 95.03% WER. Training the Seneca data on a Deep Speech model that was pretrained on an English dataset, reduced the WER to 70.43%. On adding 15 augmented samples per sample, the WER reduced to 68.33%. Finally, adding 25 augmented samples per sample, the WER reduced to 48.23%. Experiments to find the best augmentation method among noise addition, pitch variation, speed variation augmentation and GAN augmentation revealed that GAN augmentation performed the best, with a WER reduction to 60.03%

    ComSL: A Composite Speech-Language Model for End-to-End Speech-to-Text Translation

    Full text link
    Joint speech-language training is challenging due to the large demand for training data and GPU consumption, as well as the modality gap between speech and language. We present ComSL, a speech-language model built atop a composite architecture of public pretrained speech-only and language-only models and optimized data-efficiently for spoken language tasks. Particularly, we propose to incorporate cross-modality learning into transfer learning and conduct them simultaneously for downstream tasks in a multi-task learning manner. Our approach has demonstrated effectiveness in end-to-end speech-to-text translation tasks, achieving a new state-of-the-art average BLEU score of 31.5 on the multilingual speech to English text translation task for 21 languages, as measured on the public CoVoST2 evaluation set
    • …
    corecore