31,305 research outputs found

    Plant recognition, detection, and counting with deep learning

    Get PDF
    In agricultural and farm management, plant recognition, plant detection, and plant counting systems are crucial. We can apply these tasks to several applications, for example, plant disease detection, weed detection, fruit harvest system, and plant species identification. Plants can be identified by looking at their most discriminating parts, such as a leaf, fruit, flower, bark, and the overall plant, by considering attributes as shape, size, or color. However, the identification of plant species from field observation can be complicated, time-consuming, and requires specialized expertise. Computer vision and machine-learning techniques have become ubiquitous and are invaluable to overcome problems with plant recognition in research. Although these techniques have been of great help, image-based plant recognition is still a challenge. There are several obstacles, such as considerable species diversity, intra-class dissimilarity, inter-class similarity, and blurred resource images. Recently, the emerging of deep learning has brought substantial advances in image classification. Deep learning architectures can learn from images and notably increase their predictive accuracy. This thesis provides various techniques, including data augmentation and classification schemes, to improve plant recognition, plant detection, and plant counting system

    Not Using the Car to See the Sidewalk: Quantifying and Controlling the Effects of Context in Classification and Segmentation

    Full text link
    Importance of visual context in scene understanding tasks is well recognized in the computer vision community. However, to what extent the computer vision models for image classification and semantic segmentation are dependent on the context to make their predictions is unclear. A model overly relying on context will fail when encountering objects in context distributions different from training data and hence it is important to identify these dependencies before we can deploy the models in the real-world. We propose a method to quantify the sensitivity of black-box vision models to visual context by editing images to remove selected objects and measuring the response of the target models. We apply this methodology on two tasks, image classification and semantic segmentation, and discover undesirable dependency between objects and context, for example that "sidewalk" segmentation relies heavily on "cars" being present in the image. We propose an object removal based data augmentation solution to mitigate this dependency and increase the robustness of classification and segmentation models to contextual variations. Our experiments show that the proposed data augmentation helps these models improve the performance in out-of-context scenarios, while preserving the performance on regular data.Comment: 14 pages (12 figures

    SSM-Net for Plants Disease Identification in Low Data Regime

    Full text link
    Plant disease detection is an essential factor in increasing agricultural production. Due to the difficulty of disease detection, farmers spray various pesticides on their crops to protect them, causing great harm to crop growth and food standards. Deep learning can offer critical aid in detecting such diseases. However, it is highly inconvenient to collect a large volume of data on all forms of the diseases afflicting a specific plant species. In this paper, we propose a new metrics-based few-shot learning SSM net architecture, which consists of stacked siamese and matching network components to address the problem of disease detection in low data regimes. We demonstrated our experiments on two datasets: mini-leaves diseases and sugarcane diseases dataset. We have showcased that the SSM-Net approach can achieve better decision boundaries with an accuracy of 92.7% on the mini-leaves dataset and 94.3% on the sugarcane dataset. The accuracy increased by ~10% and ~5% respectively, compared to the widely used VGG16 transfer learning approach. Furthermore, we attained F1 score of 0.90 using SSM Net on the sugarcane dataset and 0.91 on the mini-leaves dataset. Our code implementation is available on Github: https://github.com/shruti-jadon/PlantsDiseaseDetection.Comment: 5 pages, 7 Figure

    On the Importance of Visual Context for Data Augmentation in Scene Understanding

    Get PDF
    Performing data augmentation for learning deep neural networks is known to be important for training visual recognition systems. By artificially increasing the number of training examples, it helps reducing overfitting and improves generalization. While simple image transformations can already improve predictive performance in most vision tasks, larger gains can be obtained by leveraging task-specific prior knowledge. In this work, we consider object detection, semantic and instance segmentation and augment the training images by blending objects in existing scenes, using instance segmentation annotations. We observe that randomly pasting objects on images hurts the performance, unless the object is placed in the right context. To resolve this issue, we propose an explicit context model by using a convolutional neural network, which predicts whether an image region is suitable for placing a given object or not. In our experiments, we show that our approach is able to improve object detection, semantic and instance segmentation on the PASCAL VOC12 and COCO datasets, with significant gains in a limited annotation scenario, i.e. when only one category is annotated. We also show that the method is not limited to datasets that come with expensive pixel-wise instance annotations and can be used when only bounding boxes are available, by employing weakly-supervised learning for instance masks approximation.Comment: Updated the experimental section. arXiv admin note: substantial text overlap with arXiv:1807.0742
    • …
    corecore