5,523 research outputs found

    Strengthening e-banking security using keystroke dynamics

    Get PDF
    This paper investigates keystroke dynamics and its possible use as a tool to prevent or detect fraud in the banking industry. Given that banks are constantly on the lookout for improved methods to address the menace of fraud, the paper sets out to review keystroke dynamics, its advantages, disadvantages and potential for improving the security of e-banking systems. This paper evaluates keystroke dynamics suitability of use for enhancing security in the banking sector. Results from the literature review found that keystroke dynamics can offer impressive accuracy rates for user identification. Low costs of deployment and minimal change to users modus operandi make this technology an attractive investment for banks. The paper goes on to argue that although this behavioural biometric may not be suitable as a primary method of authentication, it can be used as a secondary or tertiary method to complement existing authentication systems

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    The Effect of Feature Reduction in Click Fraud Detection: Review

    Get PDF
    It is almost impossible for online activities being without fraud. Online ads face a major threat represents by fake clicks which happen because of bots or some mischievous people. Several studies have solved the problem using machine learning algorithms. Some of them have solved only the problem of automatic click fraud (which carried out using bot), to classify physical or bot click. While many recent researches have detected click fraud problem in spite of clicks type. This paper presents a survey of methods used to detect fraud clicks on ads. It presents advantages, as well as disadvantages of each method, in general, Most recent studies in this field, have focused on features preprocessing before classification, because of the problems’ type which imposed existence many related features and this may lead to overfitting. So the solution is applying dimensional reduction algorithms, to get better results and avoid overfitting. Keywords: Click Fraud, dimensional reduction, features, Online advertising, pay_per_click. DOI: 10.7176/NCS/11-01 Publication date:July 31st 202

    Click Fraud Detection in Online and In-app Advertisements: A Learning Based Approach

    Get PDF
    Click Fraud is the fraudulent act of clicking on pay-per-click advertisements to increase a site’s revenue, to drain revenue from the advertiser, or to inflate the popularity of content on social media platforms. In-app advertisements on mobile platforms are among the most common targets for click fraud, which makes companies hesitant to advertise their products. Fraudulent clicks are supposed to be caught by ad providers as part of their service to advertisers, which is commonly done using machine learning methods. However: (1) there is a lack of research in current literature addressing and evaluating the different techniques of click fraud detection and prevention, (2) threat models composed of active learning systems (smart attackers) can mislead the training process of the fraud detection model by polluting the training data, (3) current deep learning models have significant computational overhead, (4) training data is often in an imbalanced state, and balancing it still results in noisy data that can train the classifier incorrectly, and (5) datasets with high dimensionality cause increased computational overhead and decreased classifier correctness -- while existing feature selection techniques address this issue, they have their own performance limitations. By extending the state-of-the-art techniques in the field of machine learning, this dissertation provides the following solutions: (i) To address (1) and (2), we propose a hybrid deep-learning-based model which consists of an artificial neural network, auto-encoder and semi-supervised generative adversarial network. (ii) As a solution for (3), we present Cascaded Forest and Extreme Gradient Boosting with less hyperparameter tuning. (iii) To overcome (4), we propose a row-wise data reduction method, KSMOTE, which filters out noisy data samples both in the raw data and the synthetically generated samples. (iv) For (5), we propose different column-reduction methods such as multi-time-scale Time Series analysis for fraud forecasting, using binary labeled imbalanced datasets and hybrid filter-wrapper feature selection approaches
    • …
    corecore