49 research outputs found

    Data access and integration in the ISPIDER proteomics grid

    Get PDF
    Grid computing has great potential for supporting the integration of complex, fast changing biological data repositories to enable distributed data analysis. One scenario where Grid computing has such potential is provided by proteomics resources which are rapidly being developed with the emergence of affordable, reliable methods to study the proteome. The protein identifications arising from these methods derive from multiple repositories which need to be integrated to enable uniform access to them. A number of technologies exist which enable these resources to be accessed in a Grid environment, but the independent development of these resources means that significant data integration challenges, such as heterogeneity and schema evolution, have to be met. This paper presents an architecture which supports the combined use of Grid data access (OGSA-DAI), Grid distributed querying (OGSA-DQP) and data integration (AutoMed) software tools to support distributed data analysis. We discuss the application of this architecture for the integration of several autonomous proteomics data resources

    Federating Queries to RDF repositories

    Get PDF
    Currently large amounts of RDF data are being published in the Web. These data is commonly accessed by means of SPARQL endpoints. However to query a set of SPARQL endpoints new mechanisms are needed due to neither the SPARQL protocol nor the language provide any norms or guidelines about how to proceed. In this paper we present an approach for federating queries to a set of SPARQL endpoints, using relational database distributed query processing techniques and part of the WS-DAI specification for web-service based access to relational and XML databases

    Federating queries in SPARQL 1.1: syntax, semantics and evaluation

    Full text link
    Given the sustained growth that we are experiencing in the number of SPARQL endpoints available, the need to be able to send federated SPARQL queries across these has also grown. To address this use case, the W3C SPARQL working group is defining a federation extension for SPARQL 1.1 which allows for combining graph patterns that can be evaluated over several endpoints within a single query. In this paper, we describe the syntax of that extension and formalize its semantics. Additionally, we describe how a query evaluation system can be implemented for that federation extension, describing some static optimization techniques and reusing a query engine used for data-intensive science, so as to deal with large amounts of intermediate and final results. Finally we carry out a series of experiments that show that our optimizations speed up the federated query evaluation process

    Federated Query Processing for the Semantic Web

    Get PDF
    The recent years have witnessed a constant growth in the amount of RDF data available on the Web. This growth is largely based on the increasing rate of data publication on the Web by different actors such governments, life science researchers or geographical institutes. RDF data generation is mainly done by converting already existing legacy data resources into RDF (e.g. converting data stored in relational databases into RDF), but also by creating that RDF data directly (e.g. sensors). These RDF data are normally exposed by means of Linked Data-enabled URIs and SPARQL endpoints. Given the sustained growth that we are experiencing in the number of SPARQL endpoints available, the need to be able to send federated SPARQL queries across them has also grown. Tools for accessing sets of RDF data repositories are starting to appear, differing between them on the way in which they allow users to access these data (allowing users to specify directly what RDF data set they want to query, or making this process transparent to them). To overcome this heterogeneity in federated query processing solutions, the W3C SPARQL working group is defining a federation extension for SPARQL 1.1, which allows combining in a single query, graph patterns that can be evaluated in several endpoints. In this PhD thesis, we describe the syntax of that SPARQL extension for providing access to distributed RDF data sets and formalise its semantics. We adapt existing techniques for distributed data access in relational databases in order to deal with SPARQL endpoints, which we have implemented in our federation query evaluation system (SPARQL-DQP). We describe the static optimisation techniques that we implemented in our system and we carry out a series of experiments that show that our optimisations significantly speed up the query evaluation process in presence of large query results and optional operator

    Heterogeneous Relational Databases for a Grid-enabled Analysis Environment

    Get PDF
    Grid based systems require a database access mechanism that can provide seamless homogeneous access to the requested data through a virtual data access system, i.e. a system which can take care of tracking the data that is stored in geographically distributed heterogeneous databases. This system should provide an integrated view of the data that is stored in the different repositories by using a virtual data access mechanism, i.e. a mechanism which can hide the heterogeneity of the backend databases from the client applications. This paper focuses on accessing data stored in disparate relational databases through a web service interface, and exploits the features of a Data Warehouse and Data Marts. We present a middleware that enables applications to access data stored in geographically distributed relational databases without being aware of their physical locations and underlying schema. A web service interface is provided to enable applications to access this middleware in a language and platform independent way. A prototype implementation was created based on Clarens [4], Unity [7] and POOL [8]. This ability to access the data stored in the distributed relational databases transparently is likely to be a very powerful one for Grid users, especially the scientific community wishing to collate and analyze data distributed over the Grid

    Semantics and Optimization of the SPARQL 1.1 Federation Extension

    Get PDF
    The W3C SPARQL working group is defining the new SPARQL 1.1 query language. The current working draft of SPARQL 1.1 focuses mainly on the description of the language. In this paper, we provide a formalization of the syntax and semantics of the SPARQL 1.1 federation extension, an important fragment of the language that has not yet received much attention. Besides, we propose optimization techniques for this fragment, provide an implementation of the fragment including these techniques, and carry out a series of experiments that show that our optimization procedures could significantly speed up the query evaluation process

    Dynamic Integration of Evolving Distributed Databases using Services

    Get PDF
    This thesis investigates the integration of many separate existing heterogeneous and distributed databases which, due to organizational changes, must be merged and appear as one database. A solution to some database evolution problems is presented. It presents an Evolution Adaptive Service-Oriented Data Integration Architecture (EA-SODIA) to dynamically integrate heterogeneous and distributed source databases, aiming to minimize the cost of the maintenance caused by database evolution. An algorithm, named Relational Schema Mapping by Views (RSMV), is designed to integrate source databases that are exposed as services into a pre-designed global schema that is in a data integrator service. Instead of producing hard-coded programs, views are built using relational algebra operations to eliminate the heterogeneities among the source databases. More importantly, the definitions of those views are represented and stored in the meta-database with some constraints to test their validity. Consequently, the method, called Evolution Detection, is then able to identify in the meta-database the views affected by evolutions and then modify them automatically. An evaluation is presented using case study. Firstly, it is shown that most types of heterogeneity defined in this thesis can be eliminated by RSMV, except semantic conflict. Secondly, it presents that few manual modification on the system is required as long as the evolutions follow the rules. For only three types of database evolutions, human intervention is required and some existing views are discarded. Thirdly, the computational cost of the automatic modification shows a slow linear growth in the number of source database. Other characteristics addressed include EA-SODIA’ scalability, domain independence, autonomy of source databases, and potential of involving other data sources (e.g.XML). Finally, the descriptive comparison with other data integration approaches is presented. It shows that although other approaches may provide better performance of query processing in some circumstances, the service-oriented architecture provide better autonomy, flexibility and capability of evolution

    Data Management in the APPA System

    Get PDF
    International audienceCombining Grid and P2P technologies can be exploited to provide high-level data sharing in large-scale distributed environments. However, this combination must deal with two hard problems: the scale of the network and the dynamic behavior of the nodes. In this paper, we present our solution in APPA (Atlas Peer-to-Peer Architecture), a data management system with high-level services for building large-scale distributed applications. We focus on data availability and data discovery which are two main requirements for implementing large-scale Grids. We have validated APPA's services through a combination of experimentation over Grid5000, which is a very large Grid experimental platform, and simulation using SimJava. The results show very good performance in terms of communication cost and response time
    corecore