4,325 research outputs found

    Application of physical parameter identification to finite element models

    Get PDF
    A time domain technique for matching response predictions of a structural dynamic model to test measurements is developed. Significance is attached to prior estimates of physical model parameters and to experimental data. The Bayesian estimation procedure allows confidence levels in predicted physical and modal parameters to be obtained. Structural optimization procedures are employed to minimize an error functional with physical model parameters describing the finite element model as design variables. The number of complete FEM analyses are reduced using approximation concepts, including the recently developed convoluted Taylor series approach. The error function is represented in closed form by converting free decay test data to a time series model using Prony' method. The technique is demonstrated on simulated response of a simple truss structure

    Dynamics estimation and generalized tuning of stationary frame current controller for grid-tied power converters

    Get PDF
    The integration of AC-DC power converters to manage the connection of generation to the grid has increased exponentially over the last years. PV or wind generation plants are one of the main applications showing this trend. High power converters are increasingly installed for integrating the renewables in a larger scale. The control design for these converters becomes more challenging due to the reduced control bandwidth and increased complexity in the grid connection filter. A generalized and optimized control tuning approach for converters becomes more favored. This paper proposes an algorithm for estimating the dynamic performance of the stationary frame current controllers, and based on it a generalized and optimized tuning approach is developed. The experience-based specifications of the tuning inputs are not necessary through the tuning approach. Simulation and experimental results in different scenarios are shown to evaluate the proposal.Peer ReviewedPostprint (published version

    Passivity-based harmonic control through series/parallel damping of an H-bridge rectifier

    Get PDF
    Nowadays the H-bridge is one of the preferred solutions to connect DC loads or distributed sources to the single-phase grid. The control aims are: sinusoidal grid current with unity power factor and optimal DC voltage regulation capability. These objectives should be satisfied, regardless the conditions of the grid, the DC load/source and the converter nonlinearities. In this paper a passivity-based approach is thoroughly investigated proposing a damping-based solution for the error dynamics. Practical experiments with a real converter validate the analysis.

    Accurate Damping Factor and Frequency Estimation for Damped Real-Valued Sinusoidal Signals

    Get PDF
    The interpolated discrete Fourier transform (IpDFT) is one of the most popular techniques to estimate the parameters of a damped real-valued sinusoidal signal (DRSS). However, its accuracy is affected by strong noise presence and short observation windows. To this end, this letter proposes a novel two-point IpDFT method, called I2pZDFT, for the parameter estimation of a DRSS. The proposed I2pZDFT uses the zero-padding technique to increase the sampling rate in the frequency domain. The conjugate symmetry and the parity of the zero-padded signal are utilized to eliminate the influence of the spectral leakage. Simulation results highlight that the proposed I2pZDFT outperforms the existing IpDFT-based methods in terms of noise immunity, especially in the case of observation windows as short as 0.5-1 cycles
    corecore