1,195 research outputs found

    Remote sensing-based proxies for urban disaster risk management and resilience: A review

    Full text link
    © 2018 by the authors. Rapid increase in population and growing concentration of capital in urban areas has escalated both the severity and longer-term impact of natural disasters. As a result, Disaster Risk Management (DRM) and reduction have been gaining increasing importance for urban areas. Remote sensing plays a key role in providing information for urban DRM analysis due to its agile data acquisition, synoptic perspective, growing range of data types, and instrument sophistication, as well as low cost. As a consequence numerous methods have been developed to extract information for various phases of DRM analysis. However, given the diverse information needs, only few of the parameters of interest are extracted directly, while the majority have to be elicited indirectly using proxies. This paper provides a comprehensive review of the proxies developed for two risk elements typically associated with pre-disaster situations (vulnerability and resilience), and two post-disaster elements (damage and recovery), while focusing on urban DRM. The proxies were reviewed in the context of four main environments and their corresponding sub-categories: built-up (buildings, transport, and others), economic (macro, regional and urban economics, and logistics), social (services and infrastructures, and socio-economic status), and natural. All environments and the corresponding proxies are discussed and analyzed in terms of their reliability and sufficiency in comprehensively addressing the selected DRM assessments. We highlight strength and identify gaps and limitations in current proxies, including inconsistencies in terminology for indirect measurements. We present a systematic overview for each group of the reviewed proxies that could simplify cross-fertilization across different DRM domains and may assist the further development of methods. While systemizing examples from the wider remote sensing domain and insights from social and economic sciences, we suggest a direction for developing new proxies, also potentially suitable for capturing functional recovery

    Assessing Building Vulnerability to Tsunami Hazard Using Integrative Remote Sensing and GIS Approaches

    Get PDF
    Risk and vulnerability assessment for natural hazards is of high interest. Various methods focusing on building vulnerability assessment have been developed ranging from simple approaches to sophisticated ones depending on the objectives of the study, the availability of data and technology. In-situ assessment methods have been widely used to measure building vulnerability to various types of hazards while remote sensing methods, specifically developed for assessing building vulnerability to tsunami hazard, are still very limited. The combination of remote sensing approaches with in-situ methods offers unique opportunities to overcome limitations of in-situ assessments. The main objective of this research is to develop remote sensing techniques in assessing building vulnerability to tsunami hazard as one of the key elements of risk assessment. The research work has been performed in the framework of the GITEWS (German-Indonesian Tsunami Early Warning System) project. This research contributes to two major components of tsunami risk assessment: (1) the provision of infrastructure vulnerability information as an important element in the exposure assessment; (2) tsunami evacuation modelling which is a critical element for assessing immediate response and capability to evacuate as part of the coping capacity analysis. The newly developed methodology is based on the combination of in-situ measurements and remote sensing techniques in a so-called “bottom-up remote sensing approach”. Within this approach, basic information was acquired by in-situ data collection (bottom level), which was then used as input for further analysis in the remote sensing approach (upper level). The results of this research show that a combined in-situ measurement and remote sensing approach can be successfully employed to assess and classify buildings into 4 classes based on their level of vulnerability to tsunami hazard with an accuracy of more than 80 percent. Statistical analysis successfully revealed key spatial parameters which were regarded to link parameters between in-situ and remote sensing approach such as size, height, shape, regularity, orientation, and accessibility. The key spatial parameters and their specified threshold values were implemented in a decision tree algorithm for developing a remote sensing rule-set of building vulnerability classification. A big number of buildings in the study area (Cilacap city, Indonesia) were successfully classified into the building vulnerability classes. The categorization ranges from high to low vulnerable buildings (A to C) and includes also a category of buildings which are potentially suitable for tsunami vertical evacuation (VE). A multi-criteria analysis was developed that incorporates three main components for vulnerability assessment: stability, tsunami resistance and accessibility. All the defined components were configured in a decision tree algorithm by applying weighting, scoring and threshold definition based on the building sample data. Stability components consist of structure parameters, which are closely related to the building stability against earthquake energy. Building stability needs to be analyzed because most of tsunami events in Indonesia are preceded by major earthquakes. Stability components analysis was applied in the first step of the newly developed decision tree algorithm to evaluate the building stability when earthquake strikes. Buildings with total scores below the defined threshold of stability were classified as the most vulnerable class A. Such the buildings have a high probability of being damaged after earthquake events. The remaining buildings with total scores above the defined threshold of stability were further analyzed using tsunami components and accessibility components to classify them into the vulnerability classes B, C and VE respectively. This research is based on very high spatial resolution satellite images (QuickBird) and object-based image analysis. Object-based image analysis is was chosen, because it allows the formulation of rule-sets based on image objects instead of pixels, which has significant advantages especially for the analysis of very high resolution satellite images. In the pre-processing stage, three image processing steps were performed: geometric correction, pan-sharpening and filtering. Adaptive Local Sigma and Morphological Opening filter techniques were applied as basis for the subsequent building edge detection. The data pre-processing significantly increased the accuracy of the following steps of image classification. In the next step image segmentation was developed to extract adequate image objects to be used for further classification. Image classification was carried out by grouping resulting objects into desired classes based on the derived object features. A single object was assigned by its feature characteristics calculated in the segmentation process. The characteristic features of an object - which were grouped into spectral signature, shape, size, texture, and neighbouring relations - were analysed, selected and semantically modelled to classify objects into object classes. Fuzzy logic algorithm and object feature separation analysis was performed to set the member¬ship values of objects that were grouped into particular classes. Finally this approach successfully detected and mapped building objects in the study area with their spatial attributes which provide base information for building vulnerability classification. A building vulnerability classification rule-set has been developed in this research and successfully applied to categorize building vulnerability classes. The developed approach was applied for Cilacap city, Indonesia. In order to analyze the transferability of this newly developed approach, the algorithm was also applied to Padang City, Indonesia. The results showed that the developed methodology is in general transferable. However, it requires some adaptations (e.g. thresholds) to provide accurate results. The results of this research show that Cilacap City is very vulnerable to tsunami hazard. Class A (very vulnerable) buildings cover the biggest portion of area in Cilacap City (63%), followed by class C (28%), class VE (6%) and class B (3%). Preventive measures should be carried out for the purpose of disaster risk reduction, especially for people living in such the most vulnerable buildings. Finally, the results were applied for tsunami evacuation modeling. The buildings, which were categorized as potential candidates for vertical evacuation, were selected and a GIS approach was applied to model evacuation time and evacuation routes. The results of this analysis provide important inputs to the disaster management authorities for future evacuation planning and disaster mitigation

    Enhanced change detection index for disaster response, recovery assessment and monitoring of buildings and critical facilities-A case study for Muzzaffarabad, Pakistan

    Get PDF
    The availability of Very High Resolution (VHR) optical sensors and a growing image archive that is frequently updated, allows the use of change detection in post-disaster recovery and monitoring for robust and rapid results. The proposed semi-automated GIS object-based method uses readily available pre-disaster GIS data and adds existing knowledge into the processing to enhance change detection. It also allows targeting specific types of changes pertaining to similar man-made objects such as buildings and critical facilities. The change detection method is based on pre/post normalized index, gradient of intensity, texture and edge similarity filters within the object and a set of training data. More emphasis is put on the building edges to capture the structural damage in quantifying change after disaster. Once the change is quantified, based on training data, the method can be used automatically to detect change in order to observe recovery over time in potentially large areas. Analysis over time can also contribute to obtaining a full picture of the recovery and development after disaster, thereby giving managers a better understanding of productive management and recovery practices. The recovery and monitoring can be analyzed using the index in zones extending from to epicentre of disaster or administrative boundaries over time.EU FP

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    DFPENet-geology: A Deep Learning Framework for High Precision Recognition and Segmentation of Co-seismic Landslides

    Full text link
    The following lists two main reasons for withdrawal for the public. 1. There are some problems in the method and results, and there is a lot of room for improvement. In terms of method, "Pre-trained Datasets (PD)" represents selecting a small amount from the online test set, which easily causes the model to overfit the online test set and could not obtain robust performance. More importantly, the proposed DFPENet has a high redundancy by combining the Attention Gate Mechanism and Gate Convolution Networks, and we need to revisit the section of geological feature fusion, in terms of results, we need to further improve and refine. 2. arXiv is an open-access repository of electronic preprints without peer reviews. However, for our own research, we need experts to provide comments on my work whether negative or positive. I then would use their comments to significantly improve this manuscript. Therefore, we finally decided to withdraw this manuscript in arXiv, and we will update to arXiv with the final accepted manuscript to facilitate more researchers to use our proposed comprehensive and general scheme to recognize and segment seismic landslides more efficiently.Comment: 1. There are some problems in the method and results, and there is a lot of room for improvement. Overall, the proposed DFPENet has a high redundancy by combining the Attention Gate Mechanism and Gate Convolution Networks, and we need to further improve and refine the results. 2. For our own research, we need experts to provide comments on my work whether negative or positiv

    development of a software to optimize and plan the acquisitions from uav and a first application in a post seismic environment

    Get PDF
    AbstractAn Unmanned Aerial Vehicle (UAV) is an aircraft without a human pilot on board. UAVs allow close-range photogrammetric acquisitions potentially useful for building large-scale cartography and acquisitions of building geometry. This is particularly useful in emergency situations where major accessibility problems limit the possibility of using conventional surveys. Presently, however, flights of this class of UAV are planned based only on the pilot's experience and they often acquire three or more times the number of images needed. This is clearly a time-consuming and autonomy-reducing procedure, which is certainly detrimental when extensive surveys are needed. For this reason new software, to plan the UAV's survey will be illustrated

    Automated Mapping of Ms 7.0 Jiuzhaigou Earthquake (China) Post-Disaster Landslides Based on High-Resolution UAV Imagery

    Get PDF
    The Ms 7.0 Jiuzhaigou earthquake that occurred on 8 August 2017 triggered hundreds of landslides in the Jiuzhaigou valley scenic and historic-interest area in Sichuan, China, causing heavy casualties and serious property losses. Quick and accurate mapping of post-disaster landslide distribution is of paramount importance for earthquake emergency rescue and the analysis of post-seismic landslides distribution characteristics. The automatic identification of landslides is mostly based on medium- and low-resolution satellite-borne optical remote-sensing imageries, and the high-accuracy interpretation of earthquake-triggered landslides still relies on time-consuming manual interpretation. This paper describes a methodology based on the use of 1 m high-resolution unmanned aerial vehicle (UAV) imagery acquired after the earthquake, and proposes a support vector machine (SVM) classification method combining the roads and villages mask from pre-seismic remote sensing imagery to accurately and automatically map the landslide inventory. Compared with the results of manual visual interpretation, the automatic recognition accuracy could reach 99.89%, and the Kappa coefficient was higher than 0.9, suggesting that the proposed method and 1 m high-resolution UAV imagery greatly improved the mapping accuracy of the landslide area. We also analyzed the spatial-distribution characteristics of earthquake-triggered landslides with the influenced factors of altitude, slope gradient, slope aspect, and the nearest faults, which provided important support for the further study of post-disaster landslide distribution characteristics, susceptibility prediction, and risk assessment.This work was funded by the National Key Research and Development Program of China (Project No. 2018YFC1505202), the National Natural Science Foundation of China (41941019), the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (SKLGP2020Z012), the project on identification and monitoring of potential geological hazards with remote sensing in Sichuan Province (510201202076888) and the Everest Scientific Project at Chengdu University of Technology (2020ZF114103)

    Integrated HBIM-GIS Models for Multi-Scale Seismic Vulnerability Assessment of Historical Buildings

    Get PDF
    The complexity of historical urban centres progressively needs a strategic improvement in methods and the scale of knowledge concerning the vulnerability aspect of seismic risk. A geographical multi-scale point of view is increasingly preferred in the scientific literature and in Italian regulation policies, that considers systemic behaviors of damage and vulnerability assessment from an urban perspective according to the scale of the data, rather than single building damage analysis. In this sense, a geospatial data sciences approach can contribute towards generating, integrating, and making virtuous relations between urban databases and emergency-related data, in order to constitute a multi-scale 3D database supporting strategies for conservation and risk assessment scenarios. The proposed approach developed a vulnerability-oriented GIS/HBIM integration in an urban 3D geodatabase, based on multi-scale data derived from urban cartography and emergency mapping 3D data. Integrated geometric and semantic information related to historical masonry buildings (specifically the churches) and structural data about architectural elements and damage were integrated in the approach. This contribution aimed to answer the research question supporting levels of knowledge required by directives and vulnerability assessment studies, both about the generative workflow phase, the role of HBIM models in GIS environments and toward user-oriented webGIS solutions for sharing and public use fruition, exploiting the database for expert operators involved in heritage preservation
    corecore