30,325 research outputs found

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    Structural health monitoring and bridge condition assessment

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2016This research is mainly in the field of structural identification and model calibration, optimal sensor placement, and structural health monitoring application for large-scale structures. The ultimate goal of this study is to identify the structure behavior and evaluate the health condition by using structural health monitoring system. To achieve this goal, this research firstly established two fiber optic structural health monitoring systems for a two-span truss bridge and a five-span steel girder bridge. Secondly, this research examined the empirical mode decomposition (EMD) method’s application by using the portable accelerometer system for a long steel girder bridge, and identified the accelerometer number requirements for comprehensively record bridge modal frequencies and damping. Thirdly, it developed a multi-direction model updating method which can update the bridge model by using static and dynamic measurement. Finally, this research studied the optimal static strain sensor placement and established a new method for model parameter identification and damage detection.Chapter 1: Introduction -- Chapter 2: Structural Health Monitoring of the Klehini River Bridge -- Chapter 3: Ambient Loading and Modal Parameters for the Chulitna River Bridge -- Chapter 4: Multi-direction Bridge Model Updating using Static and Dynamic Measurement -- Chapter 5: Optimal Static Strain Sensor Placement for Bridge Model Parameter Identification by using Numerical Optimization Method -- Chapter 6: Conclusions and Future Work

    Prognostic Reasoner based adaptive power management system for a more electric aircraft

    Get PDF
    This research work presents a novel approach that addresses the concept of an adaptive power management system design and development framed in the Prognostics and Health Monitoring(PHM) perspective of an Electrical power Generation and distribution system(EPGS).PHM algorithms were developed to detect the health status of EPGS components which can accurately predict the failures and also able to calculate the Remaining Useful Life(RUL), and in many cases reconfigure for the identified system and subsystem faults. By introducing these approach on Electrical power Management system controller, we are gaining a few minutes lead time to failures with an accurate prediction horizon on critical systems and subsystems components that may introduce catastrophic secondary damages including loss of aircraft. The warning time on critical components and related system reconfiguration must permits safe return to landing as the minimum criteria and would enhance safety. A distributed architecture has been developed for the dynamic power management for electrical distribution system by which all the electrically supplied loads can be effectively controlled.A hybrid mathematical model based on the Direct-Quadrature (d-q) axis transformation of the generator have been formulated for studying various structural and parametric faults. The different failure modes were generated by injecting faults into the electrical power system using a fault injection mechanism. The data captured during these studies have been recorded to form a “Failure Database” for electrical system. A hardware in loop experimental study were carried out to validate the power management algorithm with FPGA-DSP controller. In order to meet the reliability requirements a Tri-redundant electrical power management system based on DSP and FPGA has been develope

    Application of the modified damage index method to timber beams

    Full text link
    In this paper the use of two existing algorithms developed for global nondestructive evaluation to locate and evaluate localised damage in timber beams is investigated using a finite element model. These damage localisation algorithms were found, through this investigation, not to be effective in locating multiple damage scenarios and unable to evaluate the severity of damage. Hence, modifications on damage index algorithms as well as a hybrid algorithm are proposed to overcome the problems. In this study, experimental modal analysis (EMA) was used as a tool to extract mode shapes for calculating the damage index in the proposed method which utilises changes in modal strain energy between the undamaged and the damaged timber beam model. The modified damage index (MDI) method normalises the mode shape curvature and the hybrid algorithm combines the modified damage index and changes in flexibility algorithms which reflect the changes of natural frequency and mode shape. Analytical evaluations were performed to compare and verify the ability of original and modified damage localisation algorithms in locating single and multiple damage in timber beams. The modified damage index (MDI) algorithm and the hybrid damage algorithm are also used in the experimental studies to validate the effectiveness of the methods to locate and evaluate damage within timber beams by laboratory experiments. © 2007 Elsevier Ltd. All rights reserved

    Recent advances in intelligent-based structural health monitoring of civil structures

    Get PDF
    This survey paper deals with the structural health monitoring systems on the basis of methodologies involving intelligent techniques. The intelligent techniques are the most popular tools for damage identification in terms of high accuracy, reliable nature and the involvement of low cost. In this critical survey, a thorough analysis of various intelligent techniques is carried out considering the cases involved in civil structures. The importance and utilization of various intelligent tools to be mention as the concept of fuzzy logic, the technique of genetic algorithm, the methodology of neural network techniques, as well as the approaches of hybrid methods for the monitoring of the structural health of civil structures are illustrated in a sequential manner
    • …
    corecore