38,360 research outputs found

    Fracture toughness testing data: A technology survey

    Get PDF
    Technical abstracts for about 90 significant documents relating to fracture toughness testing for various structural materials including information on plane strain and the developing areas of mixed mode and plane stress test conditions are presented. An overview of the state-of-the-art represented in the documents that have been abstracted is included. The abstracts in the report are mostly for publications in the period April 1962 through April 1974. The purpose of this report is to provide, in quick reference form, a dependable source for current information in the subject field

    Photoelastic Stress Analysis

    Get PDF

    Smart monitoring of aeronautical composites plates based on electromechanical impedance measurements and artificial neural networks

    Get PDF
    This paper presents a structural health monitoring (SHM) method for in situ damage detection and localization in carbon fiber reinforced plates (CFRPs). The detection is achieved using the electromechanical impedance (EMI) technique employing piezoelectric transducers as high-frequency modal sensors. Numerical simulations based on the finite element method are carried out so as to simulate more than a hundred damage scenarios. Damage metrics are then used to quantify and detect changes between the electromechanical impedance spectrum of a pristine and damaged structure. The localization process relies on artificial neural networks (ANNs) whose inputs are derived from a principal component analysis of the damage metrics. It is shown that the resulting ANN can be used as a tool to predict the in-plane position of a single damage in a laminated composite plate

    Bridges Structural Health Monitoring and Deterioration Detection Synthesis of Knowledge and Technology

    Get PDF
    INE/AUTC 10.0

    Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm

    Get PDF
    Offshore Wind has become the most profitable renewable energy source due to the remarkable development it has experienced in Europe over the last decade. In this paper, a review of Structural Health Monitoring Systems (SHMS) for offshore wind turbines (OWT) has been carried out considering the topic as a Statistical Pattern Recognition problem. Therefore, each one of the stages of this paradigm has been reviewed focusing on OWT application. These stages are: Operational Evaluation; Data Acquisition, Normalization and Cleansing; Feature Extraction and Information Condensation; and Statistical Model Development. It is expected that optimizing each stage, SHMS can contribute to the development of efficient Condition-Based Maintenance Strategies. Optimizing this strategy will help reduce labor costs of OWTs׳ inspection, avoid unnecessary maintenance, identify design weaknesses before failure, improve the availability of power production while preventing wind turbines׳ overloading, therefore, maximizing the investments׳ return. In the forthcoming years, a growing interest in SHM technologies for OWT is expected, enhancing the potential of offshore wind farm deployments further offshore. Increasing efficiency in operational management will contribute towards achieving UK׳s 2020 and 2050 targets, through ultimately reducing the Levelised Cost of Energy (LCOE)

    Validation of in situ applicable measuring techniques for analysis of the water adsorption by stone

    Get PDF
    As the water adsorbing behaviour (WAB) of stone is a key factor for most degradation processes, its analysis is a decisive aspect when monitoring deterioration and past conservation treatments, or when selecting a proper conservation treatment. In this study the performance of various non-destructive methods for measuring the WAB are compared, with the focus on the effect of the variable factors of the methods caused by their specific design. The methods under study are the contact-sponge method (CSM), the Karsten tube (KT) and the Mirowski pipe (MIR). Their performance is compared with the standardized capillary rise method (CR) and the results are analysed in relation to the open porosity of different lithotypes. Furthermore the effect of practical encumbrances which could limit the application of these methods was valuated. It was found that KT and CSM have complementary fields of investigation, where CSM is capable of measuring the initial water uptake of less porous materials with a high precision, while KT was found commodious for measuring longer contact times for more porous lithotypes. MIR showed too many discommodities, leading to unreliable results. To adequately compare the results of the different methods, the size of the contact area appears to be the most influential factor, whereas the contact material and pressure on the surface do not indicate a significant influence on the results. The study of these factors is currently being extended by visualization of the water adsorption process via X-ray and neutron radiography in combination with physico-mathematical models describing the WAB

    The role of dynamic response parameters in damage prediction

    Get PDF
    This article presents a literature review of published methods for damage identification and prediction in mechanical structures. It discusses ways which can identify and predict structural damage from dynamic response parameters such as natural frequencies, mode shapes, and vibration amplitudes. There are many structural applications in which dynamic loads are coupled with thermal loads. Hence, a review on those methods, which have discussed structural damage under coupled loads, is also presented. Structural health monitoring with other techniques such as elastic wave propagation, wavelet transform, modal parameter, and artificial intelligence are also discussed. The published research is critically analyzed and the role of dynamic response parameters in structural health monitoring is discussed. The conclusion highlights the research gaps and future research direction

    Failure Analysis and Mechanisms of Failure of Fibrous Composite Structures

    Get PDF
    The state of the art of failure analysis and current design practices, especially as applied to the use of fibrous composite materials in aircraft structures is discussed. Deficiencies in these technologies are identified, as are directions for future research

    Aging concrete structures: a review of mechanics and concepts

    Get PDF
    The safe and cost-efficient management of our built infrastructure is a challenging task considering the expected service life of at least 50 years. In spite of time-dependent changes in material properties, deterioration processes and changing demand by society, the structures need to satisfy many technical requirements related to serviceability, durability, sustainability and bearing capacity. This review paper summarizes the challenges associated with the safe design and maintenance of aging concrete structures and gives an overview of some concepts and approaches that are being developed to address these challenges

    Characterization of concrete materials using non-destructive wave-propagation testing techniques

    Get PDF
    Non-destructive testing (NDT) of concrete members has been widely used for characterisation of material and assessment of functional structures without impairing their functions and performances. This thesis focuses on addressing critical challenges related to the practical implementation of NDT techniques based on wave-propagation approaches for characterisation of concrete members used in civil infrastructures. Specially, this research aims to achieve three interdependent objectives related to developing NDT techniques with piezoceramic-based transducers: monitoring of very early-age concrete hydration process, detection, and monitoring of cracking in concrete members of different complexity under loading. The concept of piezoceramic-based Smart Aggregate (SA) transducers is central to this research. Embedded SA transducers with an active sensing method have shown great potential for characterisation of construction materials such as concrete and concrete-steel composites. Based on the developed SA based approaches, an active sensing approach with appropriate arrangement of SAs in and on concrete members, and analysis of the received signal using the power spectral density, total received power and damage indexes is developed and applied in this thesis. To confirm its applicability for characterisation of very early-age concrete, a systematic investigation is performed into concrete specimens with different values of water-to-cement ratio due to slightly different initial water amounts, and different separation distances between the embedded SAs. For the detection and monitoring of cracking in concrete members under loading the mounted SA based approach is proposed and applied. It is shown that NDT systems, based on this approach, provide detection and monitoring of cracking in a variety of concrete members under loading, including relatively simple concrete beams and reinforced concrete beams under bending, and reinforced concrete slab as a part of a complex composite member under cyclic loading. Comparisons are provided between the proposed system and conventional load cell and strain gauge systems with each tested member
    corecore