17,639 research outputs found

    Decentralized Greedy-Based Algorithm for Smart Energy Management in Plug-in Electric Vehicle Energy Distribution Systems

    Get PDF
    Variations in electricity tariffs arising due to stochastic demand loads on the power grids have stimulated research in finding optimal charging/discharging scheduling solutions for electric vehicles (EVs). Most of the current EV scheduling solutions are either centralized, which suffer from low reliability and high complexity, while existing decentralized solutions do not facilitate the efficient scheduling of on-move EVs in large-scale networks considering a smart energy distribution system. Motivated by smart cities applications, we consider in this paper the optimal scheduling of EVs in a geographically large-scale smart energy distribution system where EVs have the flexibility of charging/discharging at spatially-deployed smart charging stations (CSs) operated by individual aggregators. In such a scenario, we define the social welfare maximization problem as the total profit of both supply and demand sides in the form of a mixed integer non-linear programming (MINLP) model. Due to the intractability, we then propose an online decentralized algorithm with low complexity which utilizes effective heuristics to forward each EV to the most profitable CS in a smart manner. Results of simulations on the IEEE 37 bus distribution network verify that the proposed algorithm improves the social welfare by about 30% on average with respect to an alternative scheduling strategy under the equal participation of EVs in charging and discharging operations. Considering the best-case performance where only EV profit maximization is concerned, our solution also achieves upto 20% improvement in flatting the final electricity load. Furthermore, the results reveal the existence of an optimal number of CSs and an optimal vehicle-to-grid penetration threshold for which the overall profit can be maximized. Our findings serve as guidelines for V2G system designers in smart city scenarios to plan a cost-effective strategy for large-scale EVs distributed energy management

    Show Me the Money: Dynamic Recommendations for Revenue Maximization

    Full text link
    Recommender Systems (RS) play a vital role in applications such as e-commerce and on-demand content streaming. Research on RS has mainly focused on the customer perspective, i.e., accurate prediction of user preferences and maximization of user utilities. As a result, most existing techniques are not explicitly built for revenue maximization, the primary business goal of enterprises. In this work, we explore and exploit a novel connection between RS and the profitability of a business. As recommendations can be seen as an information channel between a business and its customers, it is interesting and important to investigate how to make strategic dynamic recommendations leading to maximum possible revenue. To this end, we propose a novel \model that takes into account a variety of factors including prices, valuations, saturation effects, and competition amongst products. Under this model, we study the problem of finding revenue-maximizing recommendation strategies over a finite time horizon. We show that this problem is NP-hard, but approximation guarantees can be obtained for a slightly relaxed version, by establishing an elegant connection to matroid theory. Given the prohibitively high complexity of the approximation algorithm, we also design intelligent heuristics for the original problem. Finally, we conduct extensive experiments on two real and synthetic datasets and demonstrate the efficiency, scalability, and effectiveness our algorithms, and that they significantly outperform several intuitive baselines.Comment: Conference version published in PVLDB 7(14). To be presented in the VLDB Conference 2015, in Hawaii. This version gives a detailed submodularity proo

    Achieving a New Standard in Primary Care for Low-Income Populations -- Case Studies of Redesign and Change Through a Learning Collaborative

    Get PDF
    Describes four case studies that focus on improving patient care delivery systems through learning collaboratives that were undertaken by New York City's nonprofit Primary Care Development Corporation

    The Economics of Nested Insurance: The Case of SURE

    Get PDF
    Traditionally, disaster assistance was available on an ad hoc basis, but the 2008 Farm Act provides a standing disaster assistance program known as Supplemental Revenue Assistance (SURE). This paper introduces a theory of nested insurance to evaluate the impact on of SURE on intensification, acreage and adoption. The results suggest that parameters of a government program like SURE may enhance the adoption and value of crop insurance to the farm sector. A quantitative understanding of the interdependencies between programs like SURE and crop insurance, taking into account the nature of the ad hoc alternative, is important in assessing the welfare impacts on farmers, as well as insurance companies. Both our theory and simulation exercise suggest that insurance increases the volume of production and/or leads to increased intensification (substitution into higher value crops). On the other hand, the gains from insurance and from programs like SURE may be lessened by the presence and probability of ad hoc disaster assistance.Nested insurance, SURE, crops, adoption, ad hoc, disaster assistance, Crop Production/Industries, Risk and Uncertainty,

    Devising a Corporate Facility Location Strategy to Maximize Shareholder Wealth

    Get PDF
    Location decisions should consider all related impacts upon a firm’s shareholder wealth. Overall, firm cost savings available at alternative locations need to be carefully examined in addition to a location’s impact on corporate sales revenues. This article reviews relevant literature, discusses recent location decision considerations for several companies and empirically tests a model seeking to measure the impact corporate relocation decisions have upon shareholder wealth. In addition, a classification and listing of corporate location considerations is put forth to supplement the anecdotal illustrations discussed herein. Together these represent a "primer" for professionals and executives involved in corporate facility location decisions.

    Maximizing Profit in Green Cellular Networks through Collaborative Games

    Full text link
    In this paper, we deal with the problem of maximizing the profit of Network Operators (NOs) of green cellular networks in situations where Quality-of-Service (QoS) guarantees must be ensured to users, and Base Stations (BSs) can be shared among different operators. We show that if NOs cooperate among them, by mutually sharing their users and BSs, then each one of them can improve its net profit. By using a game-theoretic framework, we study the problem of forming stable coalitions among NOs. Furthermore, we propose a mathematical optimization model to allocate users to a set of BSs, in order to reduce costs and, at the same time, to meet user QoS for NOs inside the same coalition. Based on this, we propose an algorithm, based on cooperative game theory, that enables each operator to decide with whom to cooperate in order to maximize its profit. This algorithms adopts a distributed approach in which each NO autonomously makes its own decisions, and where the best solution arises without the need to synchronize them or to resort to a trusted third party. The effectiveness of the proposed algorithm is demonstrated through a thorough experimental evaluation considering real-world traffic traces, and a set of realistic scenarios. The results we obtain indicate that our algorithm allows a population of NOs to significantly improve their profits thanks to the combination of energy reduction and satisfaction of QoS requirements.Comment: Added publisher info and citation notic
    corecore