6,018 research outputs found

    Human action recognition via skeletal and depth based feature fusion

    Get PDF
    This paper addresses the problem of recognizing human actions captured with depth cameras. Human action recognition is a challenging task as the articulated action data is high dimensional in both spatial and temporal domains. An effective approach to handle this complexity is to divide human body into different body parts according to human skeletal joint positions, and performs recognition based on these part-based feature descriptors. Since different types of features could share some similar hidden structures, and different actions may be well characterized by properties common to all features (sharable structure) and those specific to a feature (specific structure), we propose a joint group sparse regression-based learning method to model each action. Our method can mine the sharable and specific structures among its part-based multiple features meanwhile imposing the importance of these part-based feature structures by joint group sparse regularization, in favor of discriminative part-based feature structure selection. To represent the dynamics and appearance of the human body parts, we employ part-based multiple features extracted from skeleton and depth data respectively. Then, using the group sparse regularization techniques, we have derived an algorithm for mining the key part-based features in the proposed learning framework. The resulting features derived from the learnt weight matrices are more discriminative for multi-task classification. Through extensive experiments on three public datasets, we demonstrate that our approach outperforms existing methods

    Radar and RGB-depth sensors for fall detection: a review

    Get PDF
    This paper reviews recent works in the literature on the use of systems based on radar and RGB-Depth (RGB-D) sensors for fall detection, and discusses outstanding research challenges and trends related to this research field. Systems to detect reliably fall events and promptly alert carers and first responders have gained significant interest in the past few years in order to address the societal issue of an increasing number of elderly people living alone, with the associated risk of them falling and the consequences in terms of health treatments, reduced well-being, and costs. The interest in radar and RGB-D sensors is related to their capability to enable contactless and non-intrusive monitoring, which is an advantage for practical deployment and users’ acceptance and compliance, compared with other sensor technologies, such as video-cameras, or wearables. Furthermore, the possibility of combining and fusing information from The heterogeneous types of sensors is expected to improve the overall performance of practical fall detection systems. Researchers from different fields can benefit from multidisciplinary knowledge and awareness of the latest developments in radar and RGB-D sensors that this paper is discussing
    corecore