1,607 research outputs found

    Estimation of monthly pan evaporation using support vector machine in Three Gorges Reservoir Area, China

    Get PDF
    Pan evaporation plays a critical role in estimating water budget and modeling crop water requirements. However, it has been measured at a very limited number of meteorological stations. Estimation of pan evaporation from measured meteorological variables offers an important alternative and drawn increasing attention in the recent years. This paper investigated the performance of support vector machine (SVM) in the estimation of monthly pan evaporation using commonly measured meteorological variables in Three Gorges Reservoir Area in China. Evaluation suggested that SVM models showed remarkable performances and significantly outperformed the empirical model. The SVM model with polynomial as kernel function outperformed that with radial basis function. In the case of unavailable measurements of pan evaporation and meteorological variables to construct the SVM model, pan evaporation can be well-estimated by SVM model developed using data at other sites. The results indicated that the SVM method would be a promising alternative over the traditional approaches for estimating pan evaporation from measured meteorological variables

    Modeling pan evaporation using Gaussian Process Regression, K-Nearest Neighbors, Random Forest, and Support Vector Machines: Comparative analysis

    Get PDF
    Evaporation is a very important process; it is one of the most critical factors in agricultural, hydrological, and meteorological studies. Due to the interactions of multiple climatic factors, evaporation is considered as a complex and nonlinear phenomenon to model. Thus, machine learning methods have gained popularity in this realm. In the present study, four machine learning methods of Gaussian Process Regression (GPR), K-Nearest Neighbors (KNN), Random Forest (RF) and Support Vector Regression (SVR) were used to predict the pan evaporation (PE). Meteorological data including PE, temperature (T), relative humidity (RH), wind speed (W), and sunny hours (S) collected from 2011 through 2017. The accuracy of the studied methods was determined using the statistical indices of Root Mean Squared Error (RMSE), correlation coefficient (R) and Mean Absolute Error (MAE). Furthermore, the Taylor charts utilized for evaluating the accuracy of the mentioned models. The results of this study showed that at Gonbad-e Kavus, Gorgan and Bandar Torkman stations, GPR with RMSE of 1.521 mm/day, 1.244 mm/day, and 1.254 mm/day, KNN with RMSE of 1.991 mm/day, 1.775 mm/day, and 1.577 mm/day, RF with RMSE of 1.614 mm/day, 1.337 mm/day, and 1.316 mm/day, and SVR with RMSE of 1.55 mm/day, 1.262 mm/day, and 1.275 mm/day had more appropriate performances in estimating PE values. It was found that GPR for Gonbad-e Kavus Station with input parameters of T, W and S and GPR for Gorgan and Bandar Torkmen stations with input parameters of T, RH, W and S had the most accurate predictions and were proposed for precise estimation of PE. The findings of the current study indicated that the PE values may be accurately estimated with few easily measured meteorological parameters

    Estimation of Reference Evapotranspiration Using Support Vector Machines: a Case Study of Adana, Turkey.

    Get PDF
    Evapotranspiration is an important parameter in hydrological and meteorological studies. Evapotranspiration forecasting plays an important role in irrigation management and hydraulic designs, especially during dry periods. In this study, average temperature (T), relative humidity (RH), wind speed (U), solar radiation (SR) parameters were used to estimate the daily evapotranspiration amount. Daily evapotranspiration estimation (ET0) was made according to the Penman-Monteith method recommended by FAO (Food and Agriculture Organization) as a standard method. The Penman-Monteith method was considered as the reference equation. Support Vector Machines (SVM) methods with four different input combinations were used to estimate the daily evapotranspiration of Adana province. SVM models were compared with each other and the reference equations’ results. According to the results obtained from SVM models, SVM3 model giave slightly better results according to the higher determination coefficient and lowest error data

    Comparison of predictions of daily evapotranspiration based on climate variables using different data mining and empirical methods in various climates of Iran

    Get PDF
    To accurately manage water resources, a precise prediction of reference evapotranspiration (ETref) is necessary. The best empirical equations to determine ETref are usually the temperature-based Baier and Robertson (BARO), the radiation-based Jensen and Haise (JEHA), and the mass transfer-based Penman (PENM) ones. Two machine learning (ML) models were used: least squares support vector regression (LSSVR) and ANFIS optimized using the particle swarm optimization algorithm (ANFPSO). These models were applied to the daily ETref at 100 synoptic stations for different climates of Iran. Performance of studied models was evaluated by the correlation coefficient (R), coefficient of determination (R2), mean absolute error (MAE), root mean square error (RMSE), scatter index (SI) and the Nash-Sutcliffe efficiency (NSE). The combination-based ML models (LSSVR4 and ANFPSO4) had the lowest error (RMSE = 0.34–2.85 mm d−1) and the best correlation (R = 0.66–0.99). The temperature-based empirical relationships had more precision than the radiation- and mass transfer-based empirical equations

    A Hybrid Approach Combining Conceptual Hydrological Models, Support Vector Machines and Remote Sensing Data for Streamflow Simulation

    Get PDF
    Understanding catchment response to rainfall events is important for accurate runoff estimation in many water-related applications, including water resources management. This study introduced a hybrid model, the Tank-least squared support vector machine (LSSVM), that incorporated intermediate state variables from a conceptual tank model within the least squared support vector machine (LSSVM) framework in order to describe aspects of the rainfall-runoff (RR) process. The efficacy of the Tank-LSSVM model was demonstrated with hydro-meteorological data measured in the Yongdam Catchment between 2007 and 2016, South Korea. We first explored the role of satellite soil moisture (SM) data (i.e., European Space Agency (ESA) CCI) in the rainfall-runoff modeling. The results indicated that the SM states inferred from the ESA CCISWI provided an effective means of describing the temporal dynamics of SM. Further, the Tank-LSSVM model’s ability to simulate daily runoff was assessed by using goodness of fit measures (i.e., root mean square error, Nash Sutcliffe coefficient (NSE), and coefficient of determination). The Tank-LSSVM models’ NSE were all classified as “very good” based on their performance during the training and testing periods. Compared to individual LSSVM and Tank models, improved daily runoff simulations were seen in the proposed Tank-LSSVM model. In particular, low flow simulations demonstrated the improvement of the Tank-LSSVM model compared to the conventional tank model

    Application of soft computing models with input vectors of snow cover area in addition to hydro-climatic data to predict the sediment loads

    Get PDF
    The accurate estimate of sediment load is important for management of the river ecosystem, designing of water infrastructures, and planning of reservoir operations. The direct measurement of sediment is the most credible method to estimate the sediments. However, this requires a lot of time and resources. Because of these two constraints, most often, it is not possible to continuously measure the daily sediments for most of the gauging sites. Nowadays, data-based sediment prediction models are famous for bridging the data gaps in the estimation of sediment loads. In data-driven sediment predictions models, the selection of input vectors is critical in determining the best structure of models for the accurate estimation of sediment yields. In this study, time series inputs of snow cover area, basin effective rainfall, mean basin average temperature, and mean basin evapotranspiration in addition to the flows were assessed for the prediction of sediment loads. The input vectors were assessed with artificial neural network (ANN), adaptive neuro-fuzzy logic inference system with grid partition (ANFIS-GP), adaptive neuro-fuzzy logic inference system with subtractive clustering (ANFIS-SC), adaptive neuro-fuzzy logic inference system with fuzzy c-means clustering (ANFIS-FCM), multiple adaptive regression splines (MARS), and sediment rating curve (SRC) models for the Gilgit River, the tributary of the Indus River in Pakistan. The comparison of different input vectors showed improvements in the prediction of sediments by using the snow cover area in addition to flows, effective rainfall, temperature, and evapotranspiration. Overall, the ANN model performed better than all other models. However, as regards sediment load peak time series, the sediment loads predicted using the ANN, ANFIS-FCM, and MARS models were found to be closer to the measured sediment loads. The ANFIS-FCM performed better in the estimation of peak sediment yields with a relative accuracy of 81.31% in comparison to the ANN and MARS models with 80.17% and 80.16% of relative accuracies, respectively. The developed multiple linear regression equation of all models show an R2^{2} value of 0.85 and 0.74 during the training and testing period, respectively
    corecore