3,593 research outputs found

    Short-term power demand forecasting using the differential polynomial neural network

    Get PDF
    Power demand forecasting is important for economically efficient operation and effective control of power systems and enables to plan the load of generating unit. The purpose of the short-term electricity demand forecasting is to forecast in advance the system load, represented by the sum of all consumers load at the same time. A precise load forecasting is required to avoid high generation cost and the spinning reserve capacity. Under-prediction of the demands leads to an insufficient reserve capacity preparation and can threaten the system stability, on the other hand, over-prediction leads to an unnecessarily large reserve that leads to a high cost preparations. Differential polynomial neural network is a new neural network type, which forms and resolves an unknown general partial differential equation of an approximation of a searched function, described by data observations. It generates convergent sum series of relative polynomial derivative terms which can substitute for the ordinary differential equation, describing 1-parametric function time-series. A new method of the short-term power demand forecasting, based on similarity relations of several subsequent day progress cycles at the same time points is presented and tested on 2 datasets. Comparisons were done with the artificial neural network using the same prediction method.Web of Science8230629

    Wind Power Forecasting Methods Based on Deep Learning: A Survey

    Get PDF
    Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of the atmosphere that encompasses nearby atmospheric pressure, temperature, roughness, and obstacles. As an effective method of high-dimensional feature extraction, deep neural network can theoretically deal with arbitrary nonlinear transformation through proper structural design, such as adding noise to outputs, evolutionary learning used to optimize hidden layer weights, optimize the objective function so as to save information that can improve the output accuracy while filter out the irrelevant or less affected information for forecasting. The establishment of high-precision wind speed and wind power forecasting models is always a challenge due to the randomness, instantaneity and seasonal characteristics

    Short-term load forecasting based on a semi-parametric additive model

    Get PDF
    Short-term load forecasting is an essential instrument in power system planning, operation and control. Many operating decisions are based on load forecasts, such as dispatch scheduling of generating capacity, reliability analysis, and maintenance planning for the generators. Overestimation of electricity demand will cause a conservative operation, which leads to the start-up of too many units or excessive energy purchase, thereby supplying an unnecessary level of reserve. On the contrary, underestimation may result in a risky operation, with insufficient preparation of spinning reserve, causing the system to operate in a vulnerable region to the disturbance. In this paper, semi-parametric additive models are proposed to estimate the relationships between demand and the driver variables. Specifically, the inputs for these models are calendar variables, lagged actual demand observations and historical and forecast temperature traces for one or more sites in the target power system. In addition to point forecasts, prediction intervals are also estimated using a modified bootstrap method suitable for the complex seasonality seen in electricity demand data. The proposed methodology has been used to forecast the half-hourly electricity demand for up to seven days ahead for power systems in the Australian National Electricity Market. The performance of the methodology is validated via out-of-sample experiments with real data from the power system, as well as through on-site implementation by the system operator.Short-term load forecasting, additive model, time series, forecast distribution

    The Challenge of Machine Learning in Space Weather Nowcasting and Forecasting

    Get PDF
    The numerous recent breakthroughs in machine learning (ML) make imperative to carefully ponder how the scientific community can benefit from a technology that, although not necessarily new, is today living its golden age. This Grand Challenge review paper is focused on the present and future role of machine learning in space weather. The purpose is twofold. On one hand, we will discuss previous works that use ML for space weather forecasting, focusing in particular on the few areas that have seen most activity: the forecasting of geomagnetic indices, of relativistic electrons at geosynchronous orbits, of solar flares occurrence, of coronal mass ejection propagation time, and of solar wind speed. On the other hand, this paper serves as a gentle introduction to the field of machine learning tailored to the space weather community and as a pointer to a number of open challenges that we believe the community should undertake in the next decade. The recurring themes throughout the review are the need to shift our forecasting paradigm to a probabilistic approach focused on the reliable assessment of uncertainties, and the combination of physics-based and machine learning approaches, known as gray-box.Comment: under revie

    Long-term Forecasting using Tensor-Train RNNs

    Get PDF
    We present Tensor-Train RNN (TT-RNN), a novel family of neural sequence architectures for multivariate forecasting in environments with nonlinear dynamics. Long-term forecasting in such systems is highly challenging, since there exist long-term temporal dependencies, higher-order correlations and sensitivity to error propagation. Our proposed tensor recurrent architecture addresses these issues by learning the nonlinear dynamics directly using higher order moments and high-order state transition functions. Furthermore, we decompose the higher-order structure using the tensor-train (TT) decomposition to reduce the number of parameters while preserving the model performance. We theoretically establish the approximation properties of Tensor-Train RNNs for general sequence inputs, and such guarantees are not available for usual RNNs. We also demonstrate significant long-term prediction improvements over general RNN and LSTM architectures on a range of simulated environments with nonlinear dynamics, as well on real-world climate and traffic data

    Energy consumption forecasting using machine learning

    Get PDF
    Forecasting electricity demand and consumption accurately is critical to the optimal and costeffective operation system, providing a competitive advantage to companies. In working with seasonal data and external variables, the traditional time-series forecasting methods cannot be applied to electricity consumption data. In energy planning for a generating company, accurate power forecasting for the electrical consumption prediction, as a technique, to understand and predict the market electricity demand is of paramount importance. Their power production can be adjusted accordingly in a deregulated market. As data type is seasonal, Persistence Models (Naïve Models), Seasonal AutoRegressive Integrated Moving Averages with eXogenous regressors (SARIMAX), and Univariate Long-Short Term Memory Neural Network (LSTM) is used to explicitly deal with seasonality as a class of time-series forecasting models. The main purpose of this project is to perform exploratory data analysis of the Spain power, then use different forecasting models to once-daily predict the next 24 hours of energy demand and daily peak demand. To split the electricity consumption data from 2015 to 2018 into training and test sets, the first three years from 2015 and 2017 were used as the training set, while values from 2018 were used as the test set. The obtained results showed that the machine learning algorithms proposed in the recent literature outperformed the tested algorithms. Models are evaluated using root mean squared error (RMSE) to be directly comparable to energy readings in the data. RMSE has calculated two ways. First to represent the error of predicting each hour at a time (i.e. one error per-hourly slice). Second to represent the models’ overall performance. The results show that electricity demand can be modeled using machine learning algorithms, deploying renewable energy, planning for high/low load days, and reducing wastage from polluting on reserve standby generation, detecting abnormalities in consumption trends, and quantifying energy and cost-saving measures
    corecore