1,112 research outputs found

    Scopes Describe Frames: A Uniform Model for Memory Layout in Dynamic Semantics (Artifact)

    Get PDF
    Our paper introduces a systematic approach to the alignment of names in the static structure of a program, and memory layout and access during its execution. We develop a uniform memory model consisting of frames that instantiate the scopes in the scope graph of a program. This provides a language-independent correspondence between static scopes and run-time memory layout, and between static resolution paths and run-time memory access paths. The approach scales to a range of binding features, supports straightforward type soundness proofs, and provides the basis for a language-independent specification of sound reachability-based garbage collection. This Coq artifact showcases how our uniform model for memory layout in dynamic semantics provides structure to type soundness proofs. The artifact contains type soundness proofs mechanized in Coq for (supersets of) all languages in the paper. The type soundness proofs rely on a language-independent framework formalizing scope graphs and frame heaps

    Concurrent Data Structures Linked in Time (Artifact)

    Get PDF
    This artifact provides the full mechanization in FCSL of the developments in the companion paper, "Concurrent Data Structures Linked in Time". In the latter, we propose a new method, based on a separation-style logic, for reasoning about concurrent objects with such linearization points. We embrace the dynamic nature of linearization points, and encode it as part of the data structure's auxiliary state, so that it can be dynamically modified in place by auxiliary code, as needed when some appropriate run-time event occurs. We illustrate the method by verifying (mechanically in FCSL) an intricate optimal snapshot algorithm due to Jayanti, as well as some clients. FCSL is the first completely formalized framework for mechanized verification of full functional correctness of fine-grained concurrent programs. It is implemented as an embedded domain-specific language (DSL) in the dependently-typed language of the Coq proof assistant, and is powerful enough to reason about programming features such as higher-order functions and local thread spawning. By incorporating a uniform concurrency model, based on state-transition systems and partial commutative monoids, FCSL makes it possible to build proofs about concurrent libraries in a thread-local, compositional way, thus facilitating scalability and reuse: libraries are verified just once, and their specifications are used ubiquitously in client-side reasoning

    Exploring Maintainability Assurance Research for Service- and Microservice-Based Systems: Directions and Differences

    Get PDF
    To ensure sustainable software maintenance and evolution, a diverse set of activities and concepts like metrics, change impact analysis, or antipattern detection can be used. Special maintainability assurance techniques have been proposed for service- and microservice-based systems, but it is difficult to get a comprehensive overview of this publication landscape. We therefore conducted a systematic literature review (SLR) to collect and categorize maintainability assurance approaches for service-oriented architecture (SOA) and microservices. Our search strategy led to the selection of 223 primary studies from 2007 to 2018 which we categorized with a threefold taxonomy: a) architectural (SOA, microservices, both), b) methodical (method or contribution of the study), and c) thematic (maintainability assurance subfield). We discuss the distribution among these categories and present different research directions as well as exemplary studies per thematic category. The primary finding of our SLR is that, while very few approaches have been suggested for microservices so far (24 of 223, ?11%), we identified several thematic categories where existing SOA techniques could be adapted for the maintainability assurance of microservices

    Concurrent Data Structures Linked in Time (Artifact)

    Get PDF
    This artifact provides the full mechanization in FCSL of the developments in the companion paper, "Concurrent Data Structures Linked in Time". In the latter, we propose a new method, based on a separation-style logic, for reasoning about concurrent objects with such linearization points. We embrace the dynamic nature of linearization points, and encode it as part of the data structure\u27s auxiliary state, so that it can be dynamically modified in place by auxiliary code, as needed when some appropriate run-time event occurs. We illustrate the method by verifying (mechanically in FCSL) an intricate optimal snapshot algorithm due to Jayanti, as well as some clients. FCSL is the first completely formalized framework for mechanized verification of full functional correctness of fine-grained concurrent programs. It is implemented as an embedded domain-specific language (DSL) in the dependently-typed language of the Coq proof assistant, and is powerful enough to reason about programming features such as higher-order functions and local thread spawning. By incorporating a uniform concurrency model, based on state-transition systems and partial commutative monoids, FCSL makes it possible to build proofs about concurrent libraries in a thread-local, compositional way, thus facilitating scalability and reuse: libraries are verified just once, and their specifications are used ubiquitously in client-side reasoning

    Hadoop-Benchmark: Rapid Prototyping and Evaluation of Self-Adaptive Behaviors in Hadoop Clusters (Artifact)

    Get PDF
    Arising with the popularity of Hadoop, optimizing Hadoop executions has grabbed lots of attention from research community. Many research contributions are proposed to elevate Hadoop performance, particularly in the domain of self-adaptive software systems. However, due to the complexity of Hadoop operation and the difficulty to reproduce experiments, the efforts of these Hadoop-related research are hard to be evaluated. To address this limitation, we propose a research acceleration platform for rapid prototyping and evaluation of self-adaptive behavior in Hadoop clusters. It provides an automated manner to quickly and easily provision reproducible Hadoop environments and execute acknowledged benchmarks. This platform is based on the state-of-the-art container technology that supports both distributed configurations as well as standalone single-host setups. We demonstrate the approach on a complete implementation of a concrete Hadoop self-adaptive case study

    Preface

    Get PDF
    • …
    corecore