87 research outputs found

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Development Of A Robust Blind Digital Video Watermarking Algorithm Using Discrete Wavelet Transform

    Get PDF
    Video watermarking technology enables us to hide an imperceptible, robust, and secure data in digital or analog video. This data can be used for tracking, fingerprinting, copyright infringement detection or any other application that requires some hidden data. Video watermarking can be achieved by either applying still image technologies to each frame of the movie or by using dedicated methods which exploit inherent features of the video sequence. There is a complex trade-off between three requirements in digital watermarking: robustness against noise and attacks, imperceptibility or invisibility, and capacity, which represent the amount of data, i.e., the number of bits encoded by the watermark. However, these three requirements conflict with each other. Increasing the watermark strength makes the system more robust but unfortunately decreases the perceptual quality. Whereas, increasing the capacity of the watermark decreases the robustness.In the production chain, video compression is usually applied before broadcasting or before transferring the video to other devices. In order to be robust against format conversions, the watermark has to be inserted before compression. Therefore, uncompressed video format has been used in the research undertaken. On the other hand, a random key is used to choose the frames to be watermarked to increase the security level of the algorithm and discourage piracy. The aim of this research is to develop a video watermarking algorithm to embed a binary image inside the uncoded video stream that acts as a logo. A mid-band discrete wavelet transform coefficients of the selected frames are chosen to be the hosted region in the frequency domain. An inverse transformation should be taken in order to get the desired watermarked video shot. In extraction process the watermark is extracted from the marked video directly without access to the original video. The experiment results showed that the proposed scheme provides better quality watermarked videos in term of watermark invisibility to human eyes. Results also indicated that obtaining average peak signal to noise ratio (PSNR) equals 41.59dB as compared with 38.48dB in the case of direct embedding. In addition, the scheme is robust against video processing operations, such as MPEG compression which could be successfully recovered. In conclusion, modifying the wavelet coefficients depending only on the logo object's pixels highly improve the invisibility and at the same time providing a good robustness level

    Probabilistic modeling of wavelet coefficients for processing of image and video signals

    Get PDF
    Statistical estimation and detection techniques are widely used in signal processing including wavelet-based image and video processing. The probability density function (PDF) of the wavelet coefficients of image and video signals plays a key role in the development of techniques for such a processing. Due to the fixed number of parameters, the conventional PDFs for the estimators and detectors usually ignore higher-order moments. Consequently, estimators and detectors designed using such PDFs do not provide a satisfactory performance. This thesis is concerned with first developing a probabilistic model that is capable of incorporating an appropriate number of parameters that depend on higher-order moments of the wavelet coefficients. This model is then used as the prior to propose certain estimation and detection techniques for denoising and watermarking of image and video signals. Towards developing the probabilistic model, the Gauss-Hermite series expansion is chosen, since the wavelet coefficients have non-compact support and their empirical density function shows a resemblance to the standard Gaussian function. A modification is introduced in the series expansion so that only a finite number of terms can be used for modeling the wavelet coefficients with rendering the resulting PDF to become negative. The parameters of the resulting PDF, called the modified Gauss-Hermite (NIGH) PDF, are evaluated in terms of the higher-order sample-moments. It is shown that the MGH PDF fits the empirical density function better than the existing PDFs that use a limited number of parameters do. The proposed MGH PDF is used as the prior of image and video signals in designing maximum a posteriori and minimum mean squared error-based estimators for denoising of image and video signals and log-likelihood ratio-based detector for watermarking of image signals. The performance of the estimation and detection techniques are then evaluated in terms of the commonly used metrics. It is shown through extensive experimentations that the estimation and detection techniques developed utilizing the proposed MGH PDF perform substantially better than those that utilize the conventional PDFs. These results confirm that the superior fit of the MGH PDF to the empirical density function resulting from the flexibility of the MGH PDF in choosing the number of parameters, which are functions of higher-order moments of data, leads to the better performance. Thus, the proposed MGH PDF should play a significant role in wavelet-based image and video signal processin

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications

    Low-frequency Image Deep Steganography: Manipulate the Frequency Distribution to Hide Secrets with Tenacious Robustness

    Full text link
    Image deep steganography (IDS) is a technique that utilizes deep learning to embed a secret image invisibly into a cover image to generate a container image. However, the container images generated by convolutional neural networks (CNNs) are vulnerable to attacks that distort their high-frequency components. To address this problem, we propose a novel method called Low-frequency Image Deep Steganography (LIDS) that allows frequency distribution manipulation in the embedding process. LIDS extracts a feature map from the secret image and adds it to the cover image to yield the container image. The container image is not directly output by the CNNs, and thus, it does not contain high-frequency artifacts. The extracted feature map is regulated by a frequency loss to ensure that its frequency distribution mainly concentrates on the low-frequency domain. To further enhance robustness, an attack layer is inserted to damage the container image. The retrieval network then retrieves a recovered secret image from a damaged container image. Our experiments demonstrate that LIDS outperforms state-of-the-art methods in terms of robustness, while maintaining high fidelity and specificity. By avoiding high-frequency artifacts and manipulating the frequency distribution of the embedded feature map, LIDS achieves improved robustness against attacks that distort the high-frequency components of container images

    Robust color image watermarking using Discrete Wavelet Transform, Discrete Cosine Transform and Cat Face Transform

    Get PDF
    The primary concern in color image watermarking is to have an effective watermarking method that can be robust against common image processing attacks such as JPEG compression, rotation, sharpening, blurring, and salt and pepper attacks for copyright protection purposes. This research examined the existing color image watermarking methods to identify their strengths and weaknesses, and then proposed a new method and the best embedding place in the host image to enhance and overcome the existing gap in the color image watermarking methods. This research proposed a new robust color image watermarking method using Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT), and Cat Face Transform. In this method, both host and watermark images decomposed into three color channels: red, green, and blue. The second level DWT was applied to each color channel of the host image. DWT decomposed the image into four sub-band coefficients: Low-pass filter in the row, Low-pass filter in the column (LL) signifies approximation coefficient, High-pass filter in the row, Low-pass filter in the column (HL) signifies horizontal coefficient, Low-pass filter in the row, High-pass filter in the column (LH) signifies vertical coefficient, and High-pass filter in the row, High-pass filter in the column (HH) signifies diagonal coefficient. Then, HL2 and LH2 were chosen as the embedding places to improve the robustness and security, and they were divided into 4×4 non-overlapping blocks, then DCT was applied on each block. DCT turned a signal into the frequency domain, which is effective in image processing, specifically in JPEG compression due to good performance. On the other hand, the Cat Face Transform method with a private key was used to enhance the robustness of the proposed method by scrambling the watermark image before embedding. Finally, the second private key was used to embed the watermark in the host image. The results show enhanced robustness against common image processing attacks: JPEG compression (3.37%), applied 2% salt and pepper (0.4%), applied 10% salt and pepper (2%), applied 1.0 radius sharpening (0.01%), applied 1.0 radius blurring (8.1%), and can withstand rotation attack. In sum, the proposed color image watermarking method indicates better robustness against common image processing attacks compared to other reviewed methods

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    High capacity data embedding schemes for digital media

    Get PDF
    High capacity image data hiding methods and robust high capacity digital audio watermarking algorithms are studied in this thesis. The main results of this work are the development of novel algorithms with state-of-the-art performance, high capacity and transparency for image data hiding and robustness, high capacity and low distortion for audio watermarking.En esta tesis se estudian y proponen diversos métodos de data hiding de imágenes y watermarking de audio de alta capacidad. Los principales resultados de este trabajo consisten en la publicación de varios algoritmos novedosos con rendimiento a la altura de los mejores métodos del estado del arte, alta capacidad y transparencia, en el caso de data hiding de imágenes, y robustez, alta capacidad y baja distorsión para el watermarking de audio.En aquesta tesi s'estudien i es proposen diversos mètodes de data hiding d'imatges i watermarking d'àudio d'alta capacitat. Els resultats principals d'aquest treball consisteixen en la publicació de diversos algorismes nous amb rendiment a l'alçada dels millors mètodes de l'estat de l'art, alta capacitat i transparència, en el cas de data hiding d'imatges, i robustesa, alta capacitat i baixa distorsió per al watermarking d'àudio.Societat de la informació i el coneixemen

    Watermarking scheme using slantlet transform and enhanced knight tour algorithm for medical images

    Get PDF
    Digital watermarking has been employed as an alternative solution to protect the medical healthcare system with a layer of protection applied directly on top of data stored. Medical image that is highly sensitive to the image processing and cannot tolerate any visual degradation has become the focus of digital watermarking. However, since watermarking introduces some changes on medical images, it is a challenge for medical image watermarking to maintain high imperceptibility and robustness at the same time. Research to date has tended to focus on the embedding method instead of the sequence of embedding of the watermarking itself. Also, although watermarking has been introduced into medical images as a layer of protection, it still cannot prevent a knowledgeable hacker from retrieving the watermark. Therefore, this research proposes a robust watermarking scheme with high imperceptibility for medical images to increase the effectiveness of the medical healthcare system in terms of perceptibility, embedding technique, embedding region and embedding sequence of the watermarking scheme. To increase imperceptibility of a watermark, this research introduces Dynamic Visibility Threshold, a new parameter that increases visual quality in terms of imperceptibility. It is a unique number which differs for each host image using descriptive statistics. In addition, two new concepts of embedding region, namely Embeddable zone (EBD) and Non-Embeddable zone (NEBD) to function as a non-parametric decision region to complicate the estimate of the detection function are also proposed. The sequence of embedding is shuffled using enhanced Knight Tour algorithm based on Slantlet Transform to increase the complexity of the watermarking scheme. A significant result from the Peak Signal-to-Noise Ratio (PSNR) evaluation showing approximately 270 dB was obtained, suggesting that this proposed medical image watermarking technique outperforms other contemporary techniques in the same working domain. Based on the experimental result using the standard dataset, all host images are resilient to Salt and Pepper Noise, Speckle Noise, Poisson Noise, Rotation and Sharpen Filter with minimum Bit Error Rate (BER) of 0.0426 and Normalized Cross-Correlation (NCC) value of as high as 1. Since quartile theory is used, this experiment has shown that among all three quartiles, the Third Quartile performs the best in functioning as Dynamic Visibility Threshold (DVT) with 0 for BER and 1 for NCC evaluation

    Robust watermarking and its applications to communication problems

    Get PDF
    Digital watermarking has recently gained an intense interest in research and applications. An invisible and secret signal, called watermark, is added to the host data. With the help of this watermark issuer of the data can be unveiled, unauthorised users can be identified, illicit copying can be avoided, any attempt to temper with the data can be detected and many other security services can be provided. In this thesis, the relations and differences between watermarking and communication systems are elaborated. Based on these results new methods for both watermarking and communication are derived. A new blind, robust and reversible watermarking scheme based on Code Division Multiple Access (CDMA) is presented in this thesis. Using this scheme watermark is arithmetically added to spatial domain or frequency domain. Watermark is extracted by using spreading codes only. Proposed watermarking scheme is simple, computationally efficient and can be applied to any image format. A novel idea that watermark can be part of the image is presented. By using watermark, which is a part of an image, digital watermarking can be used beyond simple security tasks. A part of an image is selected and embedded in the whole image as watermark. This watermarked image is attacked (transmitted or compressed). By using the extracted watermark and attacked selected part image quality can be assessed or jpeg quantization ratio can be estimated or even image can be equalized blindly. Furthermore, CDMA based watermarking is used to authenticate radio frequency signal. Spreaded watermark is added in the form of noise to the modulated radio frequency signal. If this noise is increased, watermarked signal automatically becomes a scrambled signal. Later watermark is extracted and by using reversibility of proposed scheme watermark is removed. Once the watermarked is removed original signal is restored, hence descrambled
    corecore