23 research outputs found

    Using hypergraph theory to model coexistence management and coordinated spectrum allocation for heterogeneous wireless networks operating in shared spectrum

    Get PDF
    Electromagnetic waves in the Radio Frequency (RF) spectrum are used to convey wireless transmissions from one radio antenna to another. Spectrum utilisation factor, which refers to how readily a given spectrum can be reused across space and time while maintaining an acceptable level of transmission errors, is used to measure how efficiently a unit of frequency spectrum can be allocated to a specified number of users. The demand for wireless applications is increasing exponentially, hence there is a need for efficient management of the RF spectrum. However, spectrum usage studies have shown that the spectrum is under-utilised in space and time. A regulatory shift from static spectrum assignment to DSA is one way of addressing this. Licence exemption policy has also been advanced in Dynamic Spectrum Access (DSA) systems to spur wireless innovation and universal access to the internet. Furthermore, there is a shift from homogeneous to heterogeneous radio access and usage of the same spectrum band. These three shifts from traditional spectrum management have led to the challenge of coexistence among heterogeneous wireless networks which access the spectrum using DSA techniques. Cognitive radios have the ability for spectrum agility based on spectrum conditions. However, in the presence of multiple heterogeneous networks and without spectrum coordination, there is a challenge related to switching between available channels to minimise interference and maximise spectrum allocation. This thesis therefore focuses on the design of a framework for coexistence management and spectrum coordination, with the objective of maximising spectrum utilisation across geographical space and across time. The amount of geographical coverage in which a frequency can be used is optimised through frequency reuse while ensuring that harmful interference is minimised. The time during which spectrum is occupied is increased through time-sharing of the same spectrum by two or more networks, while ensuring that spectrum is shared by networks that can coexist in the same spectrum and that the total channel load is not excessive to prevent spectrum starvation. Conventionally, a graph is used to model relationships between entities such as interference relationships among networks. However, the concept of an edge in a graph is not sufficient to model relationships that involve more than two entities, such as more than two networks that are able to share the same channel in the time domain, because an edge can only connect two entities. On the other hand, a hypergraph is a generalisation of an undirected graph in which a hyperedge can connect more than two entities. Therefore, this thesis investigates the use of hypergraph theory to model the RF environment and the spectrum allocation scheme. The hypergraph model was applied to an algorithm for spectrum sharing among 100 heterogeneous wireless networks, whose geo-locations were randomly and independently generated in a 50 km by 50 km area. Simulation results for spectrum utilisation performance have shown that the hypergraph-based model allocated channels, on average, to 8% more networks than the graph-based model. The results also show that, for the same RF environment, the hypergraph model requires up to 36% fewer channels to achieve, on average, 100% operational networks, than the graph model. The rate of growth of the running time of the hypergraph-based algorithm with respect to the input size is equal to the square of the input size, like the graph-based algorithm. Thus, the model achieved better performance at no additional time complexity.Electromagnetic waves in the Radio Frequency (RF) spectrum are used to convey wireless transmissions from one radio antenna to another. Spectrum utilisation factor, which refers to how readily a given spectrum can be reused across space and time while maintaining an acceptable level of transmission errors, is used to measure how efficiently a unit of frequency spectrum can be allocated to a specified number of users. The demand for wireless applications is increasing exponentially, hence there is a need for efficient management of the RF spectrum. However, spectrum usage studies have shown that the spectrum is under-utilised in space and time. A regulatory shift from static spectrum assignment to DSA is one way of addressing this. Licence exemption policy has also been advanced in Dynamic Spectrum Access (DSA) systems to spur wireless innovation and universal access to the internet. Furthermore, there is a shift from homogeneous to heterogeneous radio access and usage of the same spectrum band. These three shifts from traditional spectrum management have led to the challenge of coexistence among heterogeneous wireless networks which access the spectrum using DSA techniques. Cognitive radios have the ability for spectrum agility based on spectrum conditions. However, in the presence of multiple heterogeneous networks and without spectrum coordination, there is a challenge related to switching between available channels to minimise interference and maximise spectrum allocation. This thesis therefore focuses on the design of a framework for coexistence management and spectrum coordination, with the objective of maximising spectrum utilisation across geographical space and across time. The amount of geographical coverage in which a frequency can be used is optimised through frequency reuse while ensuring that harmful interference is minimised. The time during which spectrum is occupied is increased through time-sharing of the same spectrum by two or more networks, while ensuring that spectrum is shared by networks that can coexist in the same spectrum and that the total channel load is not excessive to prevent spectrum starvation. Conventionally, a graph is used to model relationships between entities such as interference relationships among networks. However, the concept of an edge in a graph is not sufficient to model relationships that involve more than two entities, such as more than two networks that are able to share the same channel in the time domain, because an edge can only connect two entities. On the other hand, a hypergraph is a generalisation of an undirected graph in which a hyperedge can connect more than two entities. Therefore, this thesis investigates the use of hypergraph theory to model the RF environment and the spectrum allocation scheme. The hypergraph model was applied to an algorithm for spectrum sharing among 100 heterogeneous wireless networks, whose geo-locations were randomly and independently generated in a 50 km by 50 km area. Simulation results for spectrum utilisation performance have shown that the hypergraph-based model allocated channels, on average, to 8% more networks than the graph-based model. The results also show that, for the same RF environment, the hypergraph model requires up to 36% fewer channels to achieve, on average, 100% operational networks, than the graph model. The rate of growth of the running time of the hypergraph-based algorithm with respect to the input size is equal to the square of the input size, like the graph-based algorithm. Thus, the model achieved better performance at no additional time complexity

    Performance Analysis of Coexistence Schemes for LTE in Unlicensed Bands

    Get PDF
    LTE in the unlicensed spectrum, is becoming a popular area of research. Since LTE-Unlicensed (LTE-U) provides subscribers with higher-quality mobile voice, and video experience in high-traffic or low-signal locations, a fair coexistence mechanism with other networks, like Wi-Fi is essential. In this thesis, we propose two coexistence mechanisms that could be employed to ensure a fair channel access. First, we consider coexistence mechanism fundamentals, and then downlink system performance of two coexistence mechanisms are analyzed for multi-operator LTE-Unlicensed (LTE-U) deployments with different simulation scenarios, using NS-3. First we introduce the most trustworthy coexistence mechanism, and then a high-performance coexistence scenario is provided. We conclude that Licensed Assisted Access (LAA) can coexist with Wi-Fi without impacting Wi-Fi more than an equivalent Wi-Fi network. In the second part, uplink performance evaluation of LTE in licensed spectrum is also demonstrated

    Impacto do comportamento transitório de sistemas de radiocomunicações na gestão do espectro

    Get PDF
    Doutoramento em Engenharia EletrotécnicaThis PhD Thesis falls within the domain of spectrum engineering and spectrum management, and intends to address current and concrete problems, with which, regulators have to deal. Particularly, the definition of technical conditions to be met by radio systems, which will operate in specific bands, selected to introduce novel concepts such as flexibility and technological neutrality. The Block Edge Mask approach was adopted to define technical conditions of operation, in those bands. However, this model, based on spectral masks, which are defined in the frequency domain, do not take into account the transient behavior or time-varying characteristics of signals used by emerging radio communication systems. Furthermore, measurement methodologies developed for validation of technical parameters associated to these models, which are recommended by international bodies, potentially lead to practical issues that must be scrutinized. Thus, alternative time-frequency mixed domain signal processing techniques are explored, in this thesis, to be used for assessing the compliance of radio systems operating under such constraints.Esta Tese de Doutoramento insere-se nos domínios da engenharia do espectro e da gestão do espectro radioelétrico, e pretende abordar problemas atuais e concretos com que os reguladores se deparam. Em particular, a definição de condições técnicas a serem cumpridas pelos sistemas rádio que irão operar em determinadas faixas de frequências, selecionadas para a introdução de abordagens de gestão do espectro mais flexíveis e tecnologicamente neutras. O modelo de Máscara Delimitadora de Bloco (Block Edge Mask) foi adotado, a nível europeu, como estratégia de definição de condições técnicas de operação, nessas faixas. Contudo, este modelo, que recorre a restrições que são apenas estabelecidas no domínio da frequência, não entra em linha de conta com comportamentos transitórios ou com a variabilidade temporal de sinais inerentes aos sistemas de radiocomunicações atuais. Para além disso, a medição e validação de parâmetros técnicos associados a estes modelos, conforme definidas nas recomendações internacionais aplicáveis, levantam problemas práticos que importa escalpelizar. Nesse sentido, são exploradas, nesta tese, técnicas alternativas de processamento de sinal no domínio misto tempo-frequência, tendo em vista a sua utilização na avaliação de conformidade dos sistemas rádio em face das restrições aplicáveis

    The Coverage, Capacity and Coexistence of Mixed High Altitude Platform and Terrestrial Segments

    Get PDF
    This thesis explores the coverage, capacity and coexistence of High Altitude Platform (HAP) and terrestrial segments in the same service area. Given the limited spectrum available, mechanisms to manage the co-channel interference to enable effective coexistence between the two infrastructures are examined. Interference arising from the HAP, caused by the relatively high transmit power and the antenna beam profile, has the potential to significantly affect the existing terrestrial system on the ground if the HAP beams are deployed without a proper strategy. Beam-pointing strategies exploiting phased array antennas on the HAPs are shown to be an effective way to place the beams, with each of them forming service cells onto the ground in the service area, especially dense user areas. Using a newly developed RF clustering technique to better point the cells over an area of a dense group of users, it is shown that near maximum coverage of 96% of the population over the service area can be provided while maintaining the coexistence with the existing terrestrial system. To improve the user experience at the cell edge, while at the same time improving the overall capacity of the system, Joint Transmission – Coordinated Multipoint (JT-CoMP) is adapted for a HAP architecture. It is shown how the HAP can potentially enable the tight scheduling needed to perform JT-CoMP due to the centralisation of all virtual E-UTRAN Node Bs (eNodeBs) on the HAP. A trade-off between CINR gain and loss of capacity when adapting JT-CoMP into the HAP system is identified, and strategies to minimise the trade-off are considered. It is shown that 57% of the users benefit from the JT-CoMP. In order to enable coordination between the HAP and terrestrial segments, a joint architecture based on a Cloud – Radio Access Network (C-RAN) system is introduced. Apart from adapting a C-RAN based system to centrally connect the two segments together, the network functional split which varies the degree of the centralised processing is also considered to deal with the limitations of HAP fronthaul link requirements. Based on the fronthaul link requirements acquired from the different splitting options, the ground relay station diversity to connect the HAP to centralised and distributed units (CUs and DUs) is also considered

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    TV White Spaces: A Pragmatic Approach

    Get PDF
    190 pages The editors and publisher have taken due care in preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information contained herein. Links to websites imply neither responsibility for, nor approval of, the information contained in those other web sites on the part of ICTP. No intellectual property rights are transferred to ICTP via this book, and the authors/readers will be free to use the given material for educational purposes.  e ICTP will not transfer rights to other organizations, nor will it be used for any commercial purposes. ICTP is not to endorse or sponsor any particular commercial product, service or activity mentioned in this book. This book is released under the Attribution-NonCommercial-NoDerivatives ¦.þ International license. For more details regarding your rights to use and redistribute this work, see http://creativecommons.org/licenses/by-nc-nd/4.0/

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Optimal Cooperative Spectrum Sensing for Cognitive Radio

    Get PDF
    The rapid increasing interest in wireless communication has led to the continuous development of wireless devices and technologies. The modern convergence and interoperability of wireless technologies has further increased the amount of services that can be provided, leading to the substantial demand for access to the radio frequency spectrum in an efficient manner. Cognitive radio (CR) an innovative concept of reusing licensed spectrum in an opportunistic manner promises to overcome the evident spectrum underutilization caused by the inflexible spectrum allocation. Spectrum sensing in an unswerving and proficient manner is essential to CR. Cooperation amongst spectrum sensing devices are vital when CR systems are experiencing deep shadowing and in a fading environment. In this thesis, cooperative spectrum sensing (CSS) schemes have been designed to optimize detection performance in an efficient and implementable manner taking into consideration: diversity performance, detection accuracy, low complexity, and reporting channel bandwidth reduction. The thesis first investigates state of the art spectrums sensing algorithms in CR. Comparative analysis and simulation results highlights the different pros, cons and performance criteria of a practical CSS scheme leading to the problem formulation of the thesis. Motivated by the problem of diversity performance in a CR network, the thesis then focuses on designing a novel relay based CSS architecture for CR. A major cooperative transmission protocol with low complexity and overhead - Amplify and Forward (AF) cooperative protocol and an improved double energy detection scheme in a single relay and multiple cognitive relay networks are designed. Simulation results demonstrated that the developed algorithm is capable of reducing the error of missed detection and improving detection probability of a primary user (PU). To improve spectrum sensing reliability while increasing agility, a CSS scheme based on evidence theory is next considered in this thesis. This focuses on a data fusion combination rule. The combination of conflicting evidences from secondary users (SUs) with the classical Dempster Shafter (DS) theory rule may produce counter-intuitive results when combining SUs sensing data leading to poor CSS performance. In order to overcome and minimise the effect of the counter-intuitive results, and to enhance performance of the CSS system, a novel state of the art evidence based decision fusion scheme is developed. The proposed approach is based on the credibility of evidence and a dissociability degree measure of the SUs sensing data evidence. Simulation results illustrate the proposed scheme improves detection performance and reduces error probability when compared to other related evidence based schemes under robust practcial scenarios. Finally, motivated by the need for a low complexity and minmum bandwidth reporting channels which can be significant in high data rate applications, novel CSS quantization schemes are proposed. Quantization methods are considered for a maximum likelihood estimation (MLE) and an evidence based CSS scheme. For the MLE based CSS, a novel uniform and optimal output entropy quantization scheme is proposed to provide fewer overhead complexities and improved throughput. While for the Evidence based CSS scheme, a scheme that quantizes the basic probability Assignment (BPA) data at each SU before being sent to the FC is designed. The proposed scheme takes into consideration the characteristics of the hypothesis distribution under diverse signal-to-noise ratio (SNR) of the PU signal based on the optimal output entropy. Simulation results demonstrate that the proposed quantization CSS scheme improves sensing performance with minimum number of quantized bits when compared to other related approaches

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems
    corecore