1,303 research outputs found

    Digital signal processing: the impact of convergence on education, society and design flow

    Get PDF
    Design and development of real-time, memory and processor hungry digital signal processing systems has for decades been accomplished on general-purpose microprocessors. Increasing needs for high-performance DSP systems made these microprocessors unattractive for such implementations. Various attempts to improve the performance of these systems resulted in the use of dedicated digital signal processing devices like DSP processors and the former heavyweight champion of electronics design – Application Specific Integrated Circuits. The advent of RAM-based Field Programmable Gate Arrays has changed the DSP design flow. Software algorithmic designers can now take their DSP algorithms right from inception to hardware implementation, thanks to the increasing availability of software/hardware design flow or hardware/software co-design. This has led to a demand in the industry for graduates with good skills in both Electrical Engineering and Computer Science. This paper evaluates the impact of technology on DSP-based designs, hardware design languages, and how graduate/undergraduate courses have changed to suit this transition

    Crack detection in a rotating shaft using artificial neural networks and PSD characterisation

    Get PDF
    Peer reviewedPostprin

    Reprint of: The potential role of desalination in managing flood risks from dam overflows: the case of Sydney, Australia

    Full text link
    © 2016 Elsevier Ltd Shifting climate patterns are causing extreme drought and flooding across the globe. This combined with the world's burgeoning population and insatiable thirst for water requires water service providers to think differently about the limited resources they manage. In Australia, the severe drought at the beginning of the century caused dams to fall to record levels. In response, many state governments invested heavily in rain-independent supplies such as desalination to augment and diversify traditional sources. However, extreme rainfall soon followed the drought, filled reservoirs and caused flooding in many locations leaving billions of dollars worth of damage and new water infrastructure standing idle. This is the case in Sydney, where the new desalination plant is still not used and the potential for major flooding has raised concerns over the safety of the large population downstream of the dam. This paper explores the growing need to understand the relationship between drought, flooding and infrastructure optimisation. The paper focuses on Sydney to illustrate the application of a system dynamics model. The new model explores options for raising the dam wall, offering airspace to assist flood protection, in contrast to options to lower the dam full supply level and utilise idle desalination capacity to fill the water security gap created. The illustrative results, using publicly available data, find that by lowering the dam water levels and operating desalination, significant flood protection can be achieved at a similar cost to raising the dam wall. The paper demonstrates the importance of optimising existing and new water resources for multiple purposes and how system dynamics modelling can assist water service providers in these complex investigations

    On Real-Time AER 2-D Convolutions Hardware for Neuromorphic Spike-Based Cortical Processing

    Get PDF
    In this paper, a chip that performs real-time image convolutions with programmable kernels of arbitrary shape is presented. The chip is a first experimental prototype of reduced size to validate the implemented circuits and system level techniques. The convolution processing is based on the address–event-representation (AER) technique, which is a spike-based biologically inspired image and video representation technique that favors communication bandwidth for pixels with more information. As a first test prototype, a pixel array of 16x16 has been implemented with programmable kernel size of up to 16x16. The chip has been fabricated in a standard 0.35- m complimentary metal–oxide–semiconductor (CMOS) process. The technique also allows to process larger size images by assembling 2-D arrays of such chips. Pixel operation exploits low-power mixed analog–digital circuit techniques. Because of the low currents involved (down to nanoamperes or even picoamperes), an important amount of pixel area is devoted to mismatch calibration. The rest of the chip uses digital circuit techniques, both synchronous and asynchronous. The fabricated chip has been thoroughly tested, both at the pixel level and at the system level. Specific computer interfaces have been developed for generating AER streams from conventional computers and feeding them as inputs to the convolution chip, and for grabbing AER streams coming out of the convolution chip and storing and analyzing them on computers. Extensive experimental results are provided. At the end of this paper, we provide discussions and results on scaling up the approach for larger pixel arrays and multilayer cortical AER systems.Commission of the European Communities IST-2001-34124 (CAVIAR)Commission of the European Communities 216777 (NABAB)Ministerio de Educación y Ciencia TIC-2000-0406-P4Ministerio de Educación y Ciencia TIC-2003-08164-C03-01Ministerio de Educación y Ciencia TEC2006-11730-C03-01Junta de Andalucía TIC-141

    First results of an Hα based search of classical Be stars in the Perseus Arm and beyond

    Get PDF
    We investigate a region of the Galactic plane, between 120° ≀ l ≀ 140° and-1° ≀ b≀+4°, and uncover a population of moderately reddened (E(B-V) ~ 1) classical Be stars within and beyond the Perseus and Outer Arms. 370 candidate emission-line stars (13â‰Črâ‰Č16) selected from the Isaac Newton Telescope Photometric Ha Survey of the Northern Galactic plane have been followed up spectroscopically. A subset of these, 67 stars with properties consistent with those of classical Be stars, have been observed at sufficient spectral resolution (Ύλ ≈ 2-4 Å) at blue wavelengths to narrow down their spectral types. We determine these to a precision estimated to be ±1 subtype and then we measure reddenings via spectral energy distribution fitting with reference to appropriate model atmospheres. Corrections for contribution to colour excess from circumstellar discs are made using an established scaling to Ha emission equivalent width. Spectroscopic parallaxes are obtained after luminosity class has been constrained via estimates of distances to neighbouring A/F stars with similar reddenings. Overwhelmingly, the stars in the sample are confirmed as luminous classical Be stars at heliocentric distances ranging from 2 kpc up to ~12 kpc. However, the errors are presently too large to enable the cumulative distribution function with respect to distance to distinguish between models placing the stars exclusively in spiral arms, or in a smooth exponentially declining distribution.Peer reviewe
    • 

    corecore