872 research outputs found

    Containing the Nanometer “Pandora-Box”: Cross-Layer Design Techniques for Variation Aware Low Power Systems

    Get PDF
    The demand for richer multimedia services, multifunctional portable devices and high data rates can only been visioned due to the improvement in semiconductor technology. Unfortunately, sub-90 nm process nodes uncover the nanometer Pandora-box exposing the barriers of technology scaling—parameter variations, that threaten the correct operation of circuits, and increased energy consumption, that limits the operational lifetime of today’s systems. The contradictory design requirements for low-power and system robustness, is one of the most challenging design problems of today. The design efforts are further complicated due to the heterogeneous types of designs (logic, memory, mixed-signal) that are included in today’s complex systems and are characterized by different design requirements. This paper presents an overview of techniques at various levels of design abstraction that lead to low power and variation aware logic, memory and mixed-signal circuits and can potentially assist in meeting the strict power budgets and yield/quality requirements of future systems

    Programmable photonics : an opportunity for an accessible large-volume PIC ecosystem

    Get PDF
    We look at the opportunities presented by the new concepts of generic programmable photonic integrated circuits (PIC) to deploy photonics on a larger scale. Programmable PICs consist of waveguide meshes of tunable couplers and phase shifters that can be reconfigured in software to define diverse functions and arbitrary connectivity between the input and output ports. Off-the-shelf programmable PICs can dramatically shorten the development time and deployment costs of new photonic products, as they bypass the design-fabrication cycle of a custom PIC. These chips, which actually consist of an entire technology stack of photonics, electronics packaging and software, can potentially be manufactured cheaper and in larger volumes than application-specific PICs. We look into the technology requirements of these generic programmable PICs and discuss the economy of scale. Finally, we make a qualitative analysis of the possible application spaces where generic programmable PICs can play an enabling role, especially to companies who do not have an in-depth background in PIC technology

    Solutions pour l'auto-adaptation des systèmes sans fil

    Get PDF
    The current demand on ubiquitous connectivity imposes stringent requirements on the fabrication of Radio-Frequency (RF) circuits. Designs are consequently transferred to the most advanced CMOS technologies that were initially introduced to improve digital performance. In addition, as technology scales down, RF circuits are more and more susceptible to a lot of variations during their lifetime, as manufacturing process variability, temperature, environmental conditions, aging… As a result, the usual worst-case circuit design is leading to sub-optimal conditions, in terms of power and/or performance most of the time for the circuit. In order to counteract these variations, increasing the performances and also reduce power consumption, adaptation strategies must be put in place.More importantly, the fabrication process introduces more and more performance variability, which can have a dramatic impact on the fabrication yield. That is why RF designs are not easily fabricated in the most advanced CMOS technologies, as 32nm or 22nm nodes for instance. In this context, the performances of RF circuits need to be calibrated after fabrication so as to take these variations into account and recover yield loss.This thesis work is presenting on a post-fabrication calibration technique for RF circuits. This technique is performed during production testing with minimum extra cost, which is critical since the cost of test can be comparable to the cost of fabrication concerning RF circuits and cannot be further raised. Calibration is enabled by equipping the circuit with tuning knobs and sensors. Optimal tuning knob identification is achieved in one-shot based on a single test step that involves measuring the sensor outputs once. For this purpose, we rely on variation-aware sensors which provide measurements that remain invariant under tuning knob changes. As an auxiliary benefit, the variation-aware sensors are non-intrusive and totally transparent to the circuit.Our proposed methodology has first been demonstrated with simulation data with an RF power amplifier as a case study. Afterwards, a silicon demonstrator has then been fabricated in a 65nm technology in order to fully demonstrate the methodology. The fabricated dataset of circuits is extracted from typical and corner wafers. This feature is very important since corner circuits are the worst design cases and therefore the most difficult to calibrate. In our case, corner circuits represent more than the two third of the overall dataset and the calibration can still be proven. In details, fabrication yield based on 3 sigma performance specifications is increased from 21% to 93%. This is a major performance of the technique, knowing that worst case circuits are very rare in industrial fabrication.La demande courante de connectivité instantanée impose un cahier des charges très strict sur la fabrication des circuits Radio-Fréquences (RF). Les circuits doivent donc être transférées vers les technologies les plus avancées, initialement introduites pour augmenter les performances des circuits purement numériques. De plus, les circuits RF sont soumis à de plus en plus de variations et cette sensibilité s’accroît avec l’avancées des technologies. Ces variations sont par exemple les variations du procédé de fabrication, la température, l’environnement, le vieillissement… Par conséquent, la méthode classique de conception de circuits “pire-cas” conduit à une utilisation non-optimale du circuit dans la vaste majorité des conditions, en termes de performances et/ou de consommation. Ces variations doivent donc être compensées, en utilisant des techniques d’adaptation.De manière plus importante encore, le procédé de fabrication des circuits introduit de plus en plus de variabilité dans les performances des circuits, ce qui a un impact important sur le rendement de fabrication des circuits. Pour cette raison, les circuits RF sont difficilement fabriqués dans les technologies CMOS les plus avancées comme les nœuds 32nm ou 22nm. Dans ce contexte, les performances des circuits RF doivent êtres calibrées après fabrication pour prendre en compte ces variations et retrouver un haut rendement de fabrication.Ce travail de these présente une méthode de calibration post-fabrication pour les circuits RF. Cette méthodologie est appliquée pendant le test de production en ajoutant un minimum de coût, ce qui est un point essentiel car le coût du test est aujourd’hui déjà comparable au coût de fabrication d’un circuit RF et ne peut être augmenté d’avantage. Par ailleurs, la puissance consommée est aussi prise en compte pour que l’impact de la calibration sur la consommation soit minimisé. La calibration est rendue possible en équipant le circuit avec des nœuds de réglages et des capteurs. L’identification de la valeur de réglage optimale du circuit est obtenue en un seul coup, en testant les performances RF une seule et unique fois. Cela est possible grâce à l’utilisation de capteurs de variations du procédé de fabrication qui sont invariants par rapport aux changements des nœuds de réglage. Un autre benefice de l’utilisation de ces capteurs de variation sont non-intrusifs et donc totalement transparents pour le circuit sous test. La technique de calibration a été démontrée sur un amplificateur de puissance RF utilisé comme cas d’étude. Une première preuve de concept est développée en utilisant des résultats de simulation.Un démonstrateur en silicium a ensuite été fabriqué en technologie 65nm pour entièrement démontrer le concept de calibration. L’ensemble des puces fabriquées a été extrait de trois types de wafer différents, avec des transistors aux performances lentes, typiques et rapides. Cette caractéristique est très importante car elle nous permet de considérer des cas de procédé de fabrication extrêmes qui sont les plus difficiles à calibrer. Dans notre cas, ces circuits représentent plus des deux tiers des puces à disposition et nous pouvons quand même prouver notre concept de calibration. Dans le détails, le rendement de fabrication passe de 21% avant calibration à plus de 93% après avoir appliqué notre méthodologie. Cela constitue une performance majeure de notre méthodologie car les circuits extrêmes sont très rares dans une fabrication industrielle

    Bridging the Gap between Physical and Circuit Analysis for Variability-Aware Microwave Design: Modeling Approaches

    Get PDF
    Process-induced variability is a growing concern in the design of analog circuits, and in particular for monolithic microwave integrated circuits (MMICs) targeting the 5G and 6G communication systems. The RF and microwave (MW) technologies developed for the deployment of these communication systems exploit devices whose dimension is now well below 100 nm, featuring an increasing variability due to the fabrication process tolerances and the inherent statistical behavior of matter at the nanoscale. In this scenario, variability analysis must be incorporated into circuit design and optimization, with ad hoc models retaining a direct link to the fabrication process and addressing typical MMIC nonlinear applications like power amplification and frequency mixing. This paper presents a flexible procedure to extract black-box models from accurate physics-based simulations, namely TCAD analysis of the active devices and EM simulations for the passive structures, incorporating the dependence on the most relevant fabrication process parameters. We discuss several approaches to extract these models and compare them to highlight their features, both in terms of accuracy and of ease of extraction. We detail how these models can be implemented into EDA tools typically used for RF and MMIC design, allowing for fast and accurate statistical and yield analysis. We demonstrate the proposed approaches extracting the black-box models for the building blocks of a power amplifier in a GaAs technology for X-band applications

    Energy autonomous systems : future trends in devices, technology, and systems

    Get PDF
    The rapid evolution of electronic devices since the beginning of the nanoelectronics era has brought about exceptional computational power in an ever shrinking system footprint. This has enabled among others the wealth of nomadic battery powered wireless systems (smart phones, mp3 players, GPS, …) that society currently enjoys. Emerging integration technologies enabling even smaller volumes and the associated increased functional density may bring about a new revolution in systems targeting wearable healthcare, wellness, lifestyle and industrial monitoring applications

    Enabling low cost test and tuning of difficult-to-measure device specifications: application to DC-DC converters and high speed devices

    Get PDF
    Low-cost test and tuning methods for difficult-to-measure specifications are presented in this research from the following perspectives: 1)"Safe" test and self-tuning for power converters: To avoid the risk of device under test (DUT) damage during conventional load/line regulation measurement on power converter, a "safe" alternate test structure is developed where the power converter (boost/buck converter) is placed in a different mode of operation during alternative test (light switching load) as opposed to standard test (heavy switching load) to prevent damage to the DUT during manufacturing test. Based on the alternative test structure, self-tuning methods for both boost and buck converters are also developed in this thesis. In addition, to make these test structures suitable for on-chip built-in self-test (BIST) application, a special sensing circuit has been designed and implemented. Stability analysis filters and appropriate models are also implemented to predict the DUT’s electrical stability condition during test and to further predict the values of tuning knobs needed for the tuning process. 2) High bandwidth RF signal generation: Up-convertion has been widely used in high frequency RF signal generation but mixer nonlinearity results in signal distortion that is difficult to eliminate with such methods. To address this problem, a framework for low-cost high-fidelity wideband RF signal generation is developed in this thesis. Depending on the band-limited target waveform, the input data for two interleaved DACs (digital-to-analog converters) system is optimized by a matrix-model-based algorithm in such a way that it minimizes the distortion between one of its image replicas in the frequency domain and the target RF waveform within a specified signal bandwidth. The approach is used to demonstrate how interferers with specified frequency characteristics can be synthesized at low cost for interference testing of RF communications systems. The frameworks presented in this thesis have a significant impact in enabling low-cost test and tuning of difficult-to-measure device specifications for power converter and high-speed devices.Ph.D

    Dynamically Controllable Integrated Radiation and Self-Correcting Power Generation in mm-Wave Circuits and Systems

    Get PDF
    This thesis presents novel design methodologies for integrated radiators and power generation at mm-wave frequencies that are enabled by the continued integration of various electronic and electromagnetic (EM) structures onto the same substrate. Beginning with the observation that transistors and their connections to EM radiating structures on an integrated substrate are essentially free, the concept of multi-port driven (MPD) radiators is introduced, which opens a vast design space that has been generally ignored due to the cost structure associated with discrete components that favors fewer transistors connected to antennas through a single port. From Maxwell's equations, a new antenna architecture, the radial MPD antennas based on the concept of MPD radiators, is analyzed to gain intuition as to the important design parameters that explain the wide-band nature of the antenna itself. The radiator is then designed and implemented at 160 GHz in a 0.13 um SiGe BiCMOS process, and the single element design has a measured effective isotropic radiated power (EIRP) of +4.6 dBm with a total radiated power of 0.63 mW. Next, the radial MPD radiator is adapted to enable dynamic polarization control (DPC). A DPC antenna is capable of controlling its radiated polarization dynamically, and entirely electronically, with no mechanical reconfiguration required. This can be done by having multiple antennas with different polarizations, or within a single antenna that has multiple drive points, as in the case of the MPD radiator with DPC. This radiator changes its polarization by adjusting the relative phase and amplitude of its multiple ports to produce polarizations with any polarization angle, and a wide range of axial ratios. A 2x1 MPD radiator array with DPC at 105 GHz is presented whose measurements show control of the polarization angle throughout the entire 0 degree through 180 degree range while in the linear polarization mode and maintaining axial ratios above 10 dB in all cases. Control of the axial ratio is also demonstrated with a measured range from 2.4 dB through 14 dB, while maintaining a fixed polarization angle. The radiator itself has a measured maximum EIRP of +7.8 dBm, with a total radiated power of 0.9 mW, and is capable of beam steering. MPD radiators were also applied in the domain of integrated silicon photonics. For these designs, the driver transistor circuitry was replaced with silicon optical waveguides and photodiodes to produce a 350 GHz signal. Three of these optical MPD radiator designs have been implemented as 2x2 arrays at 350 GHz. The first is a beam forming array that has a simulated gain of 12.1 dBi with a simulated EIRP of -2 dBm. The second has the same simulated performance, but includes optical phase modulators that enable two-dimensional beam steering. Finally, a third design incorporates multi-antenna DPC by combining the outputs of both left and right handed circularly polarized MPD antennas to produce a linear polarization with controllable polarization angle, and has a simulated gain of 11.9 dBi and EIRP of -3 dBm. In simulation, it can tune the polarization from 0 degrees through 180 degrees while maintaining a radiated power that has a 0.35 dB maximum deviation from the mean. The reliability of mm-wave radiators and power amplifiers was also investigated, and two self-healing systems have been proposed. Self-healing is a global feedback method where integrated sensors detect the performance of the circuit after fabrication and report that data to a digital control algorithm. The algorithm then is capable of setting actuators that can control the performance of the mm-wave circuit and counteract any performance degradation that is observed by the sensors. The first system is for a MPD radiator array with a partially integrated self-healing system. The self-healing MPD radiator senses substrate modes through substrate mode pickup sensors and infers the far-field radiated pattern from those sensors. DC current sensors are also included to determine the DC power consumption of the system. Actuators are implemented in the form of phase and amplitude control of the multiple drive points. The second self-healing system is a fully integrated self-healing power amplifier (PA) at 28 GHz. This system measures the output power, gain and efficiency of the PA using radio frequency (RF) power sensors, DC current sensors and junction temperature sensors. The digital block is synthesized from VHDL code on-chip and it can actuate the output power combining matching network using tunable transmission line stubs, as well as the DC operating point of the amplifying transistors through bias control. Measurements of 20 chips confirm self-healing for two different algorithms for process variation and transistor mismatch, while measurements from 10 chips show healing for load impedance mismatch, and linearity healing. Laser induced partial and total transistor failure show the benefit of self-healing in the case of catastrophic failure, with improvements of up to 3.9 dB over the default case. An exemplary yield specification shows self-healing improving the yield from 0% up through 80%.</p

    Adaptive Integrated Circuit Design for Variation Resilience and Security

    Get PDF
    The past few decades witness the burgeoning development of integrated circuit in terms of process technology scaling. Along with the tremendous benefits coming from the scaling, challenges are also presented in various stages. During the design time, the complexity of developing a circuit with millions to billions of smaller size transistors is extended after the variations are taken into account. The difficulty of analyzing these nondeterministic properties makes the allocation scheme of redundant resource hardly work in a cost-efficient way. Besides fabrication variations, analog circuits are suffered from severe performance degradations owing to their physical attributes which are vulnerable to aging effects. As such, the post-silicon calibration approach gains increasing attentions to compensate the performance mismatch. For the user-end applications, additional system failures result from the pirated and counterfeited devices provided by the untrusted semiconductor supply chain. Again analog circuits show their weakness to this threat due to the shortage of piracy avoidance techniques. In this dissertation, we propose three adaptive integrated circuit designs to overcome these challenges respectively. The first one investigates the variability-aware gate implementation with the consideration of the overhead control of adaptivity assignment. This design improves the variation resilience typically for digital circuits while optimizing the power consumption and timing yield. The second design is implemented as a self-validation system for the calibration of diverse analog circuits. The system is completely integrated on chip to enhance the convenience without external assistance. In the last design, a classic analog component is further studied to establish the configurable locking mechanism for analog circuits. The use of Satisfiability Modulo Theories addresses the difficulty of searching the unique unlocking pattern of non-Boolean variables
    corecore