1,710 research outputs found

    A Novel BLDC-Like DTC Control Technique for Induction Motors

    Get PDF
    DC brushless motors are widely adopted for their simplicity of control, even in sensorless configuration, and their high torque density. On the other hand, induction motors are very economical due to the absence of permanent magnets; for the same reason they can easily be driven in the flux-weakening region to attain a wide speed range. Nevertheless, high dynamic induction motors drives, based on field-oriented (FOC) or predictive control, require large amounts of computing power and are rather sensitive to motor parameter variations. This paper presents a simple DTC induction motor control algorithm based on a well-known BLDC control technique, which allows to realize a high dynamic induction motor speed control with wide speed range. The firmware implementation is very compact and occupies a low amount of program memory, comparable to volt-per-Hertz- (V/f-) based control algorithms. The novel control algorithm presents also good performance and low current ripple and can be implemented on a low-cost motion control DSP without resorting to high-frequency PWM

    Sensorless flux-weakening control of permanent-magnet brushless machines using third harmonic back EMF

    Get PDF
    The sensorless control of brushless machines by detecting the third harmonic back electromotive force is a relatively simple and potentially low-cost technique. However, its application has been reported only for brushless dc motors operating under normal commutation. In this paper, the utility of the method for the sensorless control of both brushless dc and ac motors, including operation in the flux-weakening mode, is demonstrated

    Direct torque control of brushless DC drives with reduced torque ripple

    Get PDF
    The application of direct torque control (DTC) to brushless ac drives has been investigated extensively. This paper describes its application to brushless dc drives, and highlights the essential differences in its implementation, as regards torque estimation and the representation of the inverter voltage space vectors. Simulated and experimental results are presented, and it is shown that, compared with conventional current control, DTC results in reduced torque ripple and a faster dynamic response

    Field oriented control of induction motors

    Get PDF
    Induction motors have always been known for their simple rugged construction, but until lately were not suitable for variable speed or servo drives due to the inherent complexity of the controls. With the advent of field oriented control (FOC), however, the induction motor has become an attractive option for these types of drive systems. An FOC system which utilizes the pulse population modulation method to synthesize the motor drive frequencies is examined. This system allows for a variable voltage to frequency ratio and enables the user to have independent control of both the speed and torque of an induction motor. A second generation of the control boards were developed and tested with the next point of focus being the minimization of the size and complexity of these controls. Many options were considered with the best approach being the use of a digital signal processor (DSP) due to its inherent ability to quickly evaluate control algorithms. The present test results of the system and the status of the optimization process using a DSP are discussed

    Quantifying the commutation error of a BLDC machine using sensorless load angle estimation

    Get PDF
    BLDC motors are often used for high speed applications, for example in pumps, ventilators and refrigerators. For commutation discrete position information is necessary. This feedback is often provided by Hall sensors instead of more expensive encoders. However, even small misalignment of the Hall sensors in low cost BLDC motors can lead to unwanted torque ripples or reduced performance of BLDC motors. This misplacement leads not only to noise and vibrations caused by the torque ripples but also to lower efficiency. In this paper, a self-sensing technique to assess the misalignment is introduced. The objective is to obtain knowledge of the quality of the commutation by quantifying the misalignment. The method used in this paper is based on the fundamental components of voltage and current measurements and only needs the available current and voltage signals and electrical parameters such as resistance and inductance to estimate the misalignment

    Improved current-regulated delta modulator for reducing switching frequency and low-frequency current error in permanent magnet brushless AC drives

    Get PDF
    The conventional current-regulated delta modulator (CRDM) results in a high current ripple and a high switching frequency at low rotational speeds, and in low-frequency current harmonics, including a fundamental current error, at high rotational speeds. An improved current controller based on CRDM is proposed which introduces a zero-vector zone and a current error correction technique. It reduces the current ripple and switching frequency at low speeds, without the need to detect the back-emf, as well as the low-frequency error at high speeds. The performance of the modulator is verified by both simulation and measurements on a permanent magnet brushless ac drive

    A general magnetic-energy-based torque estimator: validation via a permanent-magnet motor drive

    Get PDF
    This paper describes the use of the current–flux-linkage (ipsii{-}psi ) diagram to validate the performance of a general magnetic-energy-based torque estimator. An early step in the torque estimation is the use of controller duty cycles to reconstruct the average phase-voltage waveform during each pulsewidth-modulation (PWM) switching period. Samples over the fundamental period are recorded for the estimation of the average torque. The fundamental period may not be an exact multiple of the sample time. For low speed, the reconstructed voltage requires additional compensation for inverter-device losses. Experimental validation of this reconstructed waveform with the actual PWM phase-voltage waveform is impossible due to the fact that one is PWM in nature and the other is the average value during the PWM period. A solution to this is to determine the phase flux-linkage using each waveform and then plot the resultant ipsii{-}psi loops. The torque estimation is based on instantaneous measurements and can therefore be applied to any electrical machine. This paper includes test results for a three-phase interior permanent-magnet brushless ac motor operating with both sinusoidal and nonsinusoidal current waveforms

    Improved speed estimation in sensorless PM brushless AC drives

    Get PDF
    The application of flux-observer-based sensorless control to permanent-magnet brushless AC motor drives is described. Current methods of speed estimation are assessed, both theoretically and experimentally, and an improved method, which combines the best features of methods in which speed is derived from the differential of rotor position and from the ratio of the electromotive force to excitation flux linkage, is proposed. Its performance is verified experimentally

    Experimental characterization of a supercapacitor-based electrical torque-boost system for downsized ICE vehicles

    Get PDF
    The need to improve fuel economy and reduce the emission of CO2 and other harmful pollution from internal-combustion-engine vehicles has led to engine downsizing. However, downsized turbocharged engines exhibit a relatively low torque capability at low engine speeds. To overcome this problem, an electrical torque boost may be employed while accelerating and changing gear and to facilitate energy recovery during regenerative braking. This paper describes the operational requirements of a supercapacitor-based torque-boost system, outlines the design and sizing of the electrical drive-train components, and presents experimental characterization of a demonstrator system

    Pointing control for the SPIDER balloon-borne telescope

    Full text link
    We present the technology and control methods developed for the pointing system of the SPIDER experiment. SPIDER is a balloon-borne polarimeter designed to detect the imprint of primordial gravitational waves in the polarization of the Cosmic Microwave Background radiation. We describe the two main components of the telescope's azimuth drive: the reaction wheel and the motorized pivot. A 13 kHz PI control loop runs on a digital signal processor, with feedback from fibre optic rate gyroscopes. This system can control azimuthal speed with < 0.02 deg/s RMS error. To control elevation, SPIDER uses stepper-motor-driven linear actuators to rotate the cryostat, which houses the optical instruments, relative to the outer frame. With the velocity in each axis controlled in this way, higher-level control loops on the onboard flight computers can implement the pointing and scanning observation modes required for the experiment. We have accomplished the non-trivial task of scanning a 5000 lb payload sinusoidally in azimuth at a peak acceleration of 0.8 deg/s2^2, and a peak speed of 6 deg/s. We can do so while reliably achieving sub-arcminute pointing control accuracy.Comment: 20 pages, 12 figures, Presented at SPIE Ground-based and Airborne Telescopes V, June 23, 2014. To be published in Proceedings of SPIE Volume 914
    corecore