146 research outputs found

    Hybrid Magnetic Suspension Actuator for Precision Motion Control

    Get PDF

    Synthesis of Hybrid Fuzzy Logic Law for Stable Control of Magnetic Levitation System

    Get PDF
    In this paper, we present a method to design a hybrid fuzzy logic controller (FLC) for a magnetic levitation system (MLS) based on the linear feedforward control method combined with FLC. MLS has many applications in industry, transportation, but the system is strongly nonlinear and unstable at equilibrium. The fast response linear control law ensures that the ball is kept at the desired point, but does not remain stable at that point in the presence of noise or deviation from the desired position. The controller that combines linear feedforward control and FLC is designed to ensure ball stability and increase the system's fast-response when deviating from equilibrium and improve control quality. Simulation results in the presence of noise show that the proposed control law has a fast and stable effect on external noise. The advantages of the proposed controller are shown through the comparison results with conventional PID and FLC control laws

    A Hybrid Controller for Stability Robustness, Performance Robustness, and Disturbance Attenuation of a Maglev System

    Get PDF
    Devices using magnetic levitation (maglev) offer the potential for friction-free, high-speed, and high-precision operation. Applications include frictionless bearings, high-speed ground transportation systems, wafer distribution systems, high-precision positioning stages, and vibration isolation tables. Maglev systems rely on feedback controllers to maintain stable levitation. Designing such feedback controllers is challenging since mathematically the electromagnetic force is nonlinear and there is no local minimum point on the levitating force function. As a result, maglev systems are open-loop unstable. Additionally, maglev systems experience disturbances and system parameter variations (uncertainties) during operation. A successful controller design for maglev system guarantees stability during levitating despite system nonlinearity, and desirable system performance despite disturbances and system uncertainties. This research investigates five controllers that can achieve stable levitation: PD, PID, lead, model reference control, and LQR/LQG. It proposes an acceleration feedback controller (AFC) design that attenuates disturbance on a maglev system with a PD controller. This research proposes three robust controllers, QFT, Hinf , and QFT/Hinf , followed by a novel AFC-enhanced QFT/Hinf (AQH) controller. The AQH controller allows system robustness and disturbance attenuation to be achieved in one controller design. The controller designs are validated through simulations and experiments. In this research, the disturbances are represented by force disturbances on the levitated object, and the system uncertainties are represented by parameter variations. The experiments are conducted on a 1 DOF maglev testbed, with system performance including stability, disturbance rejection, and robustness being evaluated. Experiments show that the tested controllers can maintain stable levitation. Disturbance attenuation is achieved with the AFC. The robust controllers, QFT, Hinf , QFT/ Hinf, and AQH successfully guarantee system robustness. In addition, AQH controller provides the maglev system with a disturbance attenuation feature. The contributions of this research are the design and implementation of the acceleration feedback controller, the QFT/ Hinf , and the AQH controller. Disturbance attenuation and system robustness are achieved with these controllers. The controllers developed in this research are applicable to similar maglev systems

    Rotors on Active Magnetic Bearings: Modeling and Control Techniques

    Get PDF
    In the last decades the deeper and more detailed understanding of rotating machinery dynamic behavior facilitated the study and the design of several devices aiming at friction reduction, vibration damping and control, rotational speed increase and mechanical design optimization. Among these devices a promising technology is represented by active magnetic actuators which found a great spread in rotordynamics and in high precision applications due to (a) the absence of all fatigue and tribology issues motivated by the absence of contact, (b) the small sensitivity to the operating conditions, (c) the wide possibility of tuning even during operation, (d) the predictability of the behavior. This technology can be classified as a typical mechatronic product due to its nature which involves mechanical, electrical and control aspects, merging them in a single system. The attractive potential of active magnetic suspensions motivated a considerable research effort for the past decade focused mostly on electrical actuation subsystem and control strategies. Examples of application areas are: (a) Turbomachinery, (b) Vibration isolation, (c) Machine tools and electric drives, (d) Energy storing flywheels, (e) Instruments in space and physics, (f) Non-contacting suspensions for micro-techniques, (g) Identification and test equipment in rotordynamics. This chapter illustrates the design, the modeling, the experimental tests and validation of all the subsystems of a rotors on a five-axes active magnetic suspension. The mechanical, electrical, electronic and control strategies aspects are explained with a mechatronic approach evaluating all the interactions between them. The main goals of the manuscript are: • Illustrate the design and the modeling phases of a five-axes active magnetic suspension; • Discuss the design steps and the practical implementation of a standard suspension control strategy; • Introduce an off-line technique of electrical centering of the actuators; • Illustrate the design steps and the practical implementation of an online rotor selfcentering control technique. The experimental test rig is a shaft (Weight: 5.3 kg. Length: 0.5 m) supported by two radial and one axial cylindrical active magnetic bearings and powered by an asynchronous high frequency electric motor. The chapter starts on an overview of the most common technologies used to support rotors with a deep analysis of their advantages and drawbacks with respect to active magnetic bearings. Furthermore a discussion on magnetic suspensions state of the art is carried out highlighting the research efforts directions and the goals reached in the last years. In the central sections, a detailed description of each subsystem is performed along with the modeling steps. In particular the rotor is modeled with a FE code while the actuators are considered in a linearized model. The last sections of the chapter are focused on the control strategies design and the experimental tests. An off-line technique of actuators electrical centering is explained and its advantages are described in the control design context. This strategy can be summarized as follows. Knowing that: a) each actuation axis is composed by two electromagnets; b) each electromagnet needs a current closed-loop control; c) the bandwidth of this control is depending on the mechanical airgap, then the technique allows to obtain the same value of the closed-loop bandwidth of the current control of both the electromagnets of the same actuation axis. This approach improves performance and gives more steadiness to the control behavior. The decentralized approach of the control strategy allowing the full suspensions on five axes is illustrated from the design steps to the practical implementation on the control unit. Furthermore a selfcentering technique is described and implemented on the experimental test rig: this technique uses a mobile notch filter synchronous with the rotational speed and allows the rotor to spin around its mass center. The actuators are not forced to counteract the unbalance excitation avoiding saturations. Finally, the experimental tests are carried out on the rotor to validate the suspension control, the off-line electrical centering and the selfcentering technique. The numerical and experimental results are superimposed and compared to prove the effectiveness of the modeling approach

    Two-Dimensional Fuzzy Sliding Mode Control of a Field-Sensed Magnetic Suspension System

    Get PDF
    This paper presents the two-dimensional fuzzy sliding mode control of a field-sensed magnetic suspension system. The fuzzy rules include both the sliding manifold and its derivative. The fuzzy sliding mode control has advantages of the sliding mode control and the fuzzy control rules are minimized. Magnetic suspension systems are nonlinear and inherently unstable systems. The two-dimensional fuzzy sliding mode control can stabilize the nonlinear systems globally and attenuate chatter effectively. It is adequate to be applied to magnetic suspension systems. New design circuits of magnetic suspension systems are proposed in this paper. ARM Cortex-M3 microcontroller is utilized as a digital controller. The implemented driver, sensor, and control circuits are simpler, more inexpensive, and effective. This apparatus is satisfactory for engineering education. In the hands-on experiments, the proposed control scheme markedly improves performances of the field-sensed magnetic suspension system

    Commande par mode glissant de paliers magnétiques actifs économes en énergie : une approche sans modèle

    Get PDF
    Abstract : Over the past three decades, various fields have witnessed a successful application of active magnetic bearing (AMB) systems. Their favorable features include supporting high-speed rotation, low power consumption, and rotor dynamics control. Although their losses are much lower than roller bearings, these losses could limit the operation in some applications such as flywheel energy storage systems and vacuum applications. Many researchers focused their efforts on boosting magnetic bearings energy efficiency via minimizing currents supplied to electromagnetic coils either by a software solution or a hardware solution. According to a previous study, we adopt the hardware solution in this thesis. More specifically, we investigate developing an efficient and yet simple control scheme for regulating a permanent magnet-biased active magnetic bearing system. The control objective here is to suppress the rotor vibrations and reduce the corresponding control currents as possible throughout a wide operating range. Although adopting the hardware approach could achieve an energy-efficient AMB, employing an advanced control scheme could achieve a further reduction in power consumption. Many advanced control techniques have been proposed in the literature to achieve a satisfactory performance. However, the complexity of the majority of control schemes and the potential requirement of powerful platform could discourage their application in practice. The motivation behind this work is to improve the closed-loop performance without the need to do model identification and following the conventional procedure for developing a model-based controller. Here, we propose applying the hybridization concept to exploit the classical PID control and some nonlinear control tools such as first- and second-order sliding mode control, high gain observer, backstepping, and adaptive techniques to develop efficient and practical control schemes. All developed control schemes in this thesis are digitally implemented and validated on the eZdsp F2812 control board. Therefore, the applicability of the proposed model-free techniques for practical application is demonstrated. Furthermore, some of the proposed control schemes successfully achieve a good compromise between the objectives of rotor vibration attenuation and control currents minimization over a wide operating range.Résumé: Au cours des trois dernières décennies, divers domaines ont connu une application réussie des systèmes de paliers magnétiques actifs (PMA). Leurs caractéristiques favorables comprennent une capacité de rotation à grande vitesse, une faible consommation d'énergie, et le contrôle de la dynamique du rotor. Bien que leurs pertes soient beaucoup plus basses que les roulements à rouleaux, ces pertes pourraient limiter l'opération dans certaines applications telles que les systèmes de stockage d'énergie à volant d'inertie et les applications sous vide. De nombreux chercheurs ont concentré leurs efforts sur le renforcement de l'efficacité énergétique des paliers magnétiques par la minimisation des courants fournis aux bobines électromagnétiques soit par une solution logicielle, soit par une solution matérielle. Selon une étude précédente, nous adoptons la solution matérielle dans cette thèse. Plus précisément, nous étudions le développement d'un système de contrôle efficace et simple pour réguler un système de palier magnétique actif à aimant permanent polarisé. L'objectif de contrôle ici est de supprimer les vibrations du rotor et de réduire les courants de commande correspondants autant que possible tout au long d'une large plage de fonctionnement. Bien que l'adoption de l'approche matérielle pourrait atteindre un PMA économe en énergie, un système de contrôle avancé pourrait parvenir à une réduction supplémentaire de la consommation d'énergie. De nombreuses techniques de contrôle avancées ont été proposées dans la littérature pour obtenir une performance satisfaisante. Cependant, la complexité de la majorité des systèmes de contrôle et l'exigence potentielle d’une plate-forme puissante pourrait décourager leur application dans la pratique. La motivation derrière ce travail est d'améliorer les performances en boucle fermée, sans la nécessité de procéder à l'identification du modèle et en suivant la procédure classique pour développer un contrôleur basé sur un modèle. Ici, nous proposons l'application du concept d'hybridation pour exploiter le contrôle PID classique et certains outils de contrôle non linéaires tels que contrôle par mode glissement du premier et du second ordre, observateur à grand gain, backstepping et techniques adaptatives pour développer des systèmes de contrôle efficaces et pratiques. Tous les systèmes de contrôle développés dans cette thèse sont numériquement mis en oeuvre et évaluées sur la carte de contrôle eZdsp F2812. Par conséquent, l'applicabilité des techniques de modèle libre proposé pour l'application pratique est démontrée. En outre, certains des régimes de contrôle proposés ont réalisé avec succès un bon compromis entre les objectifs au rotor d’atténuation des vibrations et la minimisation des courants de commande sur une grande plage de fonctionnement

    Application of local approximators for control of real mechatronic system

    Get PDF
    Cieľom práce je aplikácia lokálnych aproximátorov pre riadenie reálnych mechatronických sústav pomocou metódy dopredného riadenia predstavujúcej zaujímavú alternatívu k metódam využívajúcim globálne aproximátory. Po ukážkových príkladoch funkcie lokálnych aproximátorov bol navrhnutý algoritmus implementovaný pre riadenie dvoch sústav, elektronickej škrtiacej klapky a výukového modelu magnetickej levitácie, predstavujúcich vysoko nelineárne a nestabilné sústavy. Skúmali sme, či riadiaci algoritmus bude mať pozitívny vplyv na presnosť regulácie, ďalej bola skúmaná jeho schopnosť prispôsobiť sa zmene parametrov sústavy a tiež prípadná možnosť jeho implementácie pre mikrokontrolér znížením vzorkovacej frekvencie. Výsledky ukázali, že riadenie založené na lokálnych modeloch zlepšilo riadenie v porovnaní s jednoduchým PID regulátorom a že má schopnosť adaptability. Veľmi výhodné sa zdá byť jeho použitie pre zariadenia umožnujúce vzorkovaciu frekvenciu do 1 kHz.The main aim of this thesis is application of local approximators for control of real mechatronic systems by means of feed-forward control which represents a promising alternative to methods utilizing global approximators. After instances of how local approximators work they were implemented for control of two plants: electronic throttle and educational model of magnetic levitation, which both represent highly non-linear and unstable systems. It was observed whether the designed algorithm would improve the regulation accuracy, further its adaptability to to the plant's parameter change was tested and nally the convenience of its implementation for MCU was observed by lowering sample frequency. The results shows that local-models based control have improved regulation in comparison with PID used alone and that it is adaptable. Moreover, its utilization by MCUs providing sample frequency up to 1 kHz seems to be very advantageous.

    A Bearingless Induction Motor Direct Torque Control and Suspension Force Control Based on Sliding Mode Variable Structure

    Get PDF
    Aiming at the problems of the large torque ripple and unstable suspension performance in traditional direct torque control (DTC) for a bearingless induction motor (BIM), a new method of DTC is proposed based on sliding mode variable structure (SMVS). The sliding mode switching surface of the torque and flux linkage controller are constructed by torque error and flux error, and the exponential reaching law is used to design the SMVS direct torque controller. On the basis of the radial suspension force mathematical model of the BIM, a radial suspension force closed-loop control method is proposed by utilizing the inverse system theory and SMVS. The simulation models of traditional DTC and the new DTC method based on SMVS of the BIM are set up in the MATLAB/Simulink toolbox. On this basis, the experiments are carried out. Simulation and experiment results showed that the stable suspension operation of the BIM can be achieved with small torque ripple and flux ripple. Besides, the dynamic response and suspension performance of the motor are improved by the proposed method

    A Chattering Free Discrete-Time Global Sliding Mode Controller for Optoelectronic Tracking System

    Get PDF
    Aiming at the uncertainties including parameter variations and external disturbances in optoelectronic tracking system, a discrete-time global sliding mode controller (DGSMC) is proposed. By the design of nonlinear switching function, the initial state of control system is set on the switching surface. An adaptive discrete-time reaching law is introduced to suppress the high-frequency chattering at control input, and a linear extrapolation method is employed to estimate the unknown uncertainties and commands. The global reachability for sliding mode and the chattering-free property are proven by means of mathematical derivation. Numerical simulation presents that the proposed DGSMC scheme not only ensures strong robustness against system uncertainties and small tracking error, but also suppresses the high-frequency chattering at control input effectively, compared with the SMC scheme using conventional discrete-time reaching law

    A novel model predictive sliding mode control for AC/DC converters with output voltage and load resistance variations

    Full text link
    © 2016 IEEE. This paper presents a novel model predictive sliding mode control (MPSMC) strategy for a three-phase grid connected AC/DC converter. The grid current is predicted for controlling the active and reactive power flows for the next sampling time instead of predicting them directly. This MPSMC scheme employs a sliding mode control (SMC) algorithm to calculate the reference values of active and reactive powers in the cost function. The reaching, existing and tracking conditions are analyzed to ensure that the designed sliding surface and control law are effective to control the system. The simulation results by Matlab/Simulink show that the MPSMC strategy is able to meet the system requirements of active and reactive powers, as well as the DC output voltage. Compared with the results obtained from the conventional model predictive PI control (MPPIC) scheme, the proposed strategy can improve the dynamic performance dramatically in terms of the response speed under system disturbances, such as varying output voltage and load demand
    corecore