70 research outputs found

    Adaptive Modulation Schemes for Underwater Acoustic OFDM Communication

    Get PDF
    High data rate communication is challenging in underwater acoustic (UA) communication as UA channels vary fast along with the environmental factors. A real-time Orthogonal frequency-division multiplexing (OFDM) based adaptive UA communication system is studied in this research employing the National Instruments (NI) LabVIEW software and NI CompactDAQ device. The developed adaptive modulation schemes enhance the reliability of communication, guarantee continuous connectivity, ensure maximum performance under a fixed BER at all times and boost data rate

    Review of Recent Trends

    Get PDF
    This work was partially supported by the European Regional Development Fund (FEDER), through the Regional Operational Programme of Centre (CENTRO 2020) of the Portugal 2020 framework, through projects SOCA (CENTRO-01-0145-FEDER-000010) and ORCIP (CENTRO-01-0145-FEDER-022141). Fernando P. Guiomar acknowledges a fellowship from “la Caixa” Foundation (ID100010434), code LCF/BQ/PR20/11770015. Houda Harkat acknowledges the financial support of the Programmatic Financing of the CTS R&D Unit (UIDP/00066/2020).MIMO-OFDM is a key technology and a strong candidate for 5G telecommunication systems. In the literature, there is no convenient survey study that rounds up all the necessary points to be investigated concerning such systems. The current deeper review paper inspects and interprets the state of the art and addresses several research axes related to MIMO-OFDM systems. Two topics have received special attention: MIMO waveforms and MIMO-OFDM channel estimation. The existing MIMO hardware and software innovations, in addition to the MIMO-OFDM equalization techniques, are discussed concisely. In the literature, only a few authors have discussed the MIMO channel estimation and modeling problems for a variety of MIMO systems. However, to the best of our knowledge, there has been until now no review paper specifically discussing the recent works concerning channel estimation and the equalization process for MIMO-OFDM systems. Hence, the current work focuses on analyzing the recently used algorithms in the field, which could be a rich reference for researchers. Moreover, some research perspectives are identified.publishersversionpublishe

    Underwater Acoustic Modems

    Full text link
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Due to the growing interest using underwater acoustic networks, there are more and more research papers about underwater communications. These papers are mainly focused on deployments and studies about the constraints of the underwater medium. The underwater acoustic channel is highly variable and the signal transmission can change according to environmental factors such as the temperature, pressure or salinity of the water. For this reason, it is important to know how these devices are developed and the maximum distance and data transfer rates they can achieve. To this end, this paper presents an exhaustive study of existing underwater acoustic modems where their main features are highlighted. We also review the main features of their hardware. All presented proposals in the research literature are compared with commercial underwater acoustic modems. Finally, we analyze different programs and improvements of existing network simulators that are often used to simulate and estimate the behavior of underwater networks.This work was supported by the Ministerio de Ciencia e Innovacion through the Plan Nacional de I+D+i 2008-2011 within the Subprograma de Proyectos de Investigacion Fundamental under Project TEC2011-27516. The associate editor coordinating the review of this paper and approving it for publication was Dr. Lei Shu. (Corresponding author: Jaime Lloret.)Sendra, S.; Lloret, J.; Jimenez, JM.; Parra-Boronat, L. (2015). Underwater Acoustic Modems. IEEE Sensors Journal. 16(11):4063-4071. https://doi.org/10.1109/JSEN.2015.2434890S40634071161
    corecore