405 research outputs found

    A Low-Power DSP Architecture for a Fully Implantable Cochlear Implant System-on-a-Chip.

    Full text link
    The National Science Foundation Wireless Integrated Microsystems (WIMS) Engineering Research Center at the University of Michigan developed Systems-on-a-Chip to achieve biomedical implant and environmental monitoring functionality in low-milliwatt power consumption and 1-2 cm3 volume. The focus of this work is implantable electronics for cochlear implants (CIs), surgically implanted devices that utilize existing nerve connections between the brain and inner-ear in cases where degradation of the sensory hair cells in the cochlea has occurred. In the absence of functioning hair cells, a CI processes sound information and stimulates the nderlying nerve cells with currents from implanted electrodes, enabling the patient to understand speech. As the brain of the WIMS CI, the WIMS microcontroller unit (MCU) delivers the communication, signal processing, and storage capabilities required to satisfy the aggressive goals set forth. The 16-bit MCU implements a custom instruction set architecture focusing on power-efficient execution by providing separate data and address register windows, multi-word arithmetic, eight addressing modes, and interrupt and subroutine support. Along with 32KB of on-chip SRAM, a low-power 512-byte scratchpad memory is utilized by the WIMS custom compiler to obtain an average of 18% energy savings across benchmarks. A synthesizable dynamic frequency scaling circuit allows the chip to select a precision on-chip LC or ring oscillator, and perform clock scaling to minimize power dissipation; it provides glitch-free, software-controlled frequency shifting in 100ns, and dissipates only 480μW. A highly flexible and expandable 16-channel Continuous Interleaved Sampling Digital Signal Processor (DSP) is included as an MCU peripheral component. Modes are included to process data, stimulate through electrodes, and allow experimental stimulation or processing. The entire WIMS MCU occupies 9.18mm2 and consumes only 1.79mW from 1.2V in DSP mode. This is the lowest reported consumption for a cochlear DSP. Design methodologies were analyzed and a new top-down design flow is presented that encourages hardware and software co-design as well as cross-domain verification early in the design process. An O(n) technique for energy-per-instruction estimations both pre- and post-silicon is presented that achieves less than 4% error across benchmarks. This dissertation advances low-power system design while providing an improvement in hearing recovery devices.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91488/1/emarsman_1.pd

    Close Copy Speech Synthesis for Speech Perception Testing

    Get PDF
    The present study is concerned with developing a speech synthesis subcomponent for perception testing in the context of evaluating cochlear implants in children. We provide a detailed requirements analysis, and develop a strategy for maximally high quality speech synthesis using Close Copy Speech synthesis techniques with a diphone based speech synthesiser, MBROLA. The close copy concept used in this work defines close copy as a function from a pair of speech signal recording and a phonemic annotation aligned with the recording into the pronunciation specification interface of the speech synthesiser. The design procedure has three phases: Manual Close Copy Speech (MCCS) synthesis as a ?best case gold standard?, in which the function is implemented manually as a preliminary step; Automatic Close Copy Speech (ACCS) synthesis, in which the steps taken in manual transformation are emulated by software; finally, Parametric Close Copy Speech (PCCS) synthesis, in which prosodic parameters are modifiable while retaining the diphones. This contribution reports on the MCCS and ACCS synthesis phases

    Technology for Hearing Evaluation

    Get PDF

    Improvement of Speech Perception for Hearing-Impaired Listeners

    Get PDF
    Hearing impairment is becoming a prevalent health problem affecting 5% of world adult populations. Hearing aids and cochlear implant already play an essential role in helping patients over decades, but there are still several open problems that prevent them from providing the maximum benefits. Financial and discomfort reasons lead to only one of four patients choose to use hearing aids; Cochlear implant users always have trouble in understanding speech in a noisy environment. In this dissertation, we addressed the hearing aids limitations by proposing a new hearing aid signal processing system named Open-source Self-fitting Hearing Aids System (OS SF hearing aids). The proposed hearing aids system adopted the state-of-art digital signal processing technologies, combined with accurate hearing assessment and machine learning based self-fitting algorithm to further improve the speech perception and comfort for hearing aids users. Informal testing with hearing-impaired listeners showed that the testing results from the proposed system had less than 10 dB (by average) difference when compared with those results obtained from clinical audiometer. In addition, Sixteen-channel filter banks with adaptive differential microphone array provides up to six-dB SNR improvement in the noisy environment. Machine-learning based self-fitting algorithm provides more suitable hearing aids settings. To maximize cochlear implant users’ speech understanding in noise, the sequential (S) and parallel (P) coding strategies were proposed by integrating high-rate desynchronized pulse trains (DPT) in the continuous interleaved sampling (CIS) strategy. Ten participants with severe hearing loss participated in the two rounds cochlear implants testing. The testing results showed CIS-DPT-S strategy significantly improved (11%) the speech perception in background noise, while the CIS-DPT-P strategy had a significant improvement in both quiet (7%) and noisy (9%) environment

    Hearing Restoration through Optical Wireless Cochlear Implants

    Get PDF
    In this chapter, we present two novel optical wireless-based cochlear implant architectures: (i) optical wireless cochlear implant (OWCI) and (ii) all-optical cochlear implant (AOCI). Both the architectures aim to decisively improve the reliability and energy efficiency of hearing restoration devices. To provide design and development guidelines, we document their main components, discuss the particularities of the transdermal optical channel, and provide the analytical framework for their accurate modeling. Building upon this framework, we extract closed-form formulas that quantify the communication, the stimulation, and the overall performance. An overall comparison of OWCI and AOCI, as well as conventional cochlear implants, accompanied by future research directions summarizes this chapter. Our findings reveal that both the OWCI and the AOCI outperform conventional cochlear implant approaches; thus, they are identified as promising architectures for the next generation of cochlear implants

    An efficient telemetry system for restoring sight

    Get PDF
    PhD ThesisThe human nervous system can be damaged as a result of disease or trauma, causing conditions such as Parkinson’s disease. Most people try pharmaceuticals as a primary method of treatment. However, drugs cannot restore some cases, such as visual disorder. Alternatively, this impairment can be treated with electronic neural prostheses. A retinal prosthesis is an example of that for restoring sight, but it is not efficient and only people with retinal pigmentosa benefit from it. In such treatments, stimulation of the nervous system can be achieved by electrical or optical means. In the latter case, the nerves need to be rendered light sensitive via genetic means (optogenetics). High radiance photonic devices are then required to deliver light to the target tissue. Such optical approaches hold the potential to be more effective while causing less harm to the brain tissue. As these devices are implanted in tissue, wireless means need to be used to communicate with them. For this, IEEE 802.15.6 or Bluetooth protocols at 2.4GHz are potentially compatible with most advanced electronic devices, and are also safe and secure. Also, wireless power delivery can operate the implanted device. In this thesis, a fully wireless and efficient visual cortical stimulator was designed to restore the sight of the blind. This system is likely to address 40% of the causes of blindness. In general, the system can be divided into two parts, hardware and software. Hardware parts include a wireless power transfer design, the communication device, power management, a processor and the control unit, and the 3D design for assembly. The software part contains the image simplification, image compression, data encoding, pulse modulation, and the control system. Real-time video streaming is processed and sent over Bluetooth, and data are received by the LPC4330 six layer implanted board. After retrieving the compressed data, the processed data are again sent to the implanted electrode/optrode to stimulate the brain’s nerve cells

    DEVELOPMENT AND EVALUATION OF ENVELOPE, SPECTRAL AND TIME ENHANCEMENT ALGORITHMS FOR AUDITORY NEUROPATHY

    Get PDF
    Auditory neuropathy (AN) is a hearing disorder that reduces the ability to detect temporal cues in speech, thus leading to deprived speech perception. Traditional amplification and frequency shifting techniques used in modern hearing aids are not suitable to assist individuals with AN due to the unique symptoms that result from the disorder. This study proposes a method for combining both speech envelope enhancement and time scaling to combine the proven benefits of each algorithm. In addition, spectral enhancement is cascaded with envelope and time enhancement to address the poor frequency discrimination in AN. The proposed speech enhancement strategy was evaluated using an AN simulator with normal hearing listeners under varying degrees of AN severity. The results showed a significant increase in word recognition scores for time scaling and envelope enhancement over envelope enhancement alone. Furthermore, the addition of spectral enhancement resulted in further increase in word recognition at profound AN severity
    • …
    corecore