33 research outputs found

    On Multiple Description Coding of Sources with Memory

    Full text link

    Colored-Gaussian Multiple Descriptions: Spectral and Time-Domain Forms

    Get PDF
    It is well known that Shannon's rate-distortion function (RDF) in the colored quadratic Gaussian (QG) case can be parametrized via a single Lagrangian variable (the "water level" in the reverse water filling solution). In this work, we show that the symmetric colored QG multiple-description (MD) RDF in the case of two descriptions can be parametrized in the spectral domain via two Lagrangian variables, which control the trade-off between the side distortion, the central distortion, and the coding rate. This spectral-domain analysis is complemented by a time-domain scheme-design approach: we show that the symmetric colored QG MD RDF can be achieved by combining ideas of delta-sigma modulation and differential pulse-code modulation. Specifically, two source prediction loops, one for each description, are embedded within a common noise shaping loop, whose parameters are explicitly found from the spectral-domain characterization.Comment: Accepted for publications in the IEEE Transactions on Information Theory. Title have been shortened, abstract clarified, and paper significantly restructure

    Optimal Filter Banks for Multiple Description Coding: Analysis and Synthesis

    Get PDF
    Multiple description (MD) coding is a source coding technique for information transmission over unreliable networks. In MD coding, the coder generates several different descriptions of the same signal and the decoder can produce a useful reconstruction of the source with any received subset of these descriptions. In this paper, we study the problem of MD coding of stationary Gaussian sources with memory. First, we compute an approximate MD rate distortion region for these sources, which we prove to be asymptotically tight at high rates. This region generalizes the MD rate distortion region of El Gamal and Cover (1982), and Ozarow (1980) for memoryless Gaussian sources. Then, we develop an algorithm for the design of optimal two-channel biorthogonal filter banks for MD coding of Gaussian sources. We show that optimal filters are obtained by allocating the redundancy over frequency with a reverse "water-filling" strategy. Finally, we present experimental results which show the effectiveness of our filter banks in the low complexity, low rate regim

    Multiple Description Vector Quantization with Lattice Codebooks: Design and Analysis

    Get PDF
    The problem of designing a multiple description vector quantizer with lattice codebook Lambda is considered. A general solution is given to a labeling problem which plays a crucial role in the design of such quantizers. Numerical performance results are obtained for quantizers based on the lattices A_2 and Z^i, i=1,2,4,8, that make use of this labeling algorithm. The high-rate squared-error distortions for this family of L-dimensional vector quantizers are then analyzed for a memoryless source with probability density function p and differential entropy h(p) < infty. For any a in (0,1) and rate pair (R,R), it is shown that the two-channel distortion d_0 and the channel 1 (or channel 2) distortions d_s satisfy lim_{R -> infty} d_0 2^(2R(1+a)) = (1/4) G(Lambda) 2^{2h(p)} and lim_{R -> infty} d_s 2^(2R(1-a)) = G(S_L) 2^2h(p), where G(Lambda) is the normalized second moment of a Voronoi cell of the lattice Lambda and G(S_L) is the normalized second moment of a sphere in L dimensions.Comment: 46 pages, 14 figure

    Unbalanced Quantized Multi-State Video Coding

    Get PDF
    Multi-State Video Coding (MSVC) is a multiple description scheme based on frame-wise splitting of the video sequence into two or more subsequences. Each subsequence is encoded separately to generate descriptions which can be decoded independently. Due to subsequence splitting the prediction gain decreases. but since reconstruction capabilities improves, error resilience of the system increases. Our focus is on Multi-State Video Coding with unbalanced quantized descriptions, which is particularly interesting for video streaming applications over heterogeneous networks where path diversity is used and transmission channels have varying transmission characteristics. The total bitrate is kept constant while the subsequences are quantized with different step sizes depending on the sequence as well as on the transmission conditions. Our goal is to figure out under which transmission conditions unbalanced bitstreams lead to good system performance in terms of the average reconstructed PSNR. Besides, we investigate the effects of intra-coding on the error resilience of the system and show that the sequence characteristics, and in particular the degree of motion in the sequence, have an important impact on the decoding performance. Finally, we propose a distortion model that is the core of an optimized rate allocation strategy, which is dependent on the network characteristics and status as well as on the video sequence characteristics

    Applications of satellite technology to broadband ISDN networks

    Get PDF
    Two satellite architectures for delivering broadband integrated services digital network (B-ISDN) service are evaluated. The first is assumed integral to an existing terrestrial network, and provides complementary services such as interconnects to remote nodes as well as high-rate multicast and broadcast service. The interconnects are at a 155 Mbs rate and are shown as being met with a nonregenerative multibeam satellite having 10-1.5 degree spots. The second satellite architecture focuses on providing private B-ISDN networks as well as acting as a gateway to the public network. This is conceived as being provided by a regenerative multibeam satellite with on-board ATM (asynchronous transfer mode) processing payload. With up to 800 Mbs offered, higher satellite EIRP is required. This is accomplished with 12-0.4 degree hopping beams, covering a total of 110 dwell positions. It is estimated the space segment capital cost for architecture one would be about 190Mwhereasthesecondarchitecturewouldbeabout190M whereas the second architecture would be about 250M. The net user cost is given for a variety of scenarios, but the cost for 155 Mbs services is shown to be about $15-22/minute for 25 percent system utilization
    corecore