129 research outputs found

    Bicoloring Random Hypergraphs

    Full text link
    We study the problem of bicoloring random hypergraphs, both numerically and analytically. We apply the zero-temperature cavity method to find analytical results for the phase transitions (dynamic and static) in the 1RSB approximation. These points appear to be in agreement with the results of the numerical algorithm. In the second part, we implement and test the Survey Propagation algorithm for specific bicoloring instances in the so called HARD-SAT phase.Comment: 14 pages, 10 figure

    On DP-Coloring of Digraphs

    Get PDF
    DP-coloring is a relatively new coloring concept by Dvo\v{r}\'ak and Postle and was introduced as an extension of list-colorings of (undirected) graphs. It transforms the problem of finding a list-coloring of a given graph GG with a list-assignment LL to finding an independent transversal in an auxiliary graph with vertex set {(v,c) ∣ v∈V(G),c∈L(v)}\{(v,c) ~|~ v \in V(G), c \in L(v)\}. In this paper, we extend the definition of DP-colorings to digraphs using the approach from Neumann-Lara where a coloring of a digraph is a coloring of the vertices such that the digraph does not contain any monochromatic directed cycle. Furthermore, we prove a Brooks' type theorem regarding the DP-chromatic number, which extends various results on the (list-)chromatic number of digraphs.Comment: 23 pages, 6 figure

    Colorings of graphs, digraphs, and hypergraphs

    Get PDF
    Brooks' Theorem ist eines der bekanntesten Resultate über Graphenfärbungen: Sei G ein zusammenhängender Graph mit Maximalgrad d. Ist G kein vollständiger Graph, so lassen sich die Ecken von G so mit d Farben färben, dass zwei benachbarte Ecken unterschiedlich gefärbt sind. In der vorliegenden Arbeit liegt der Fokus auf Verallgemeinerungen von Brooks Theorem für Färbungen von Hypergraphen und gerichteten Graphen. Eine Färbung eines Hypergraphen ist eine Färbung der Ecken so, dass keine Kante monochromatisch ist. Auf Hypergraphen erweitert wurde der Satz von Brooks von R.P. Jones. Im ersten Teil der Dissertation werden Möglichkeiten aufgezeigt, das Resultat von Jones weiter zu verallgemeinern. Kernstück ist ein Zerlegungsresultat: Zu einem Hypergraphen H und einer Folge f=(f_1,…,f_p) von Funktionen, welche von V(H) in die natürlichen Zahlen abbilden, wird untersucht, ob es eine Zerlegung von H in induzierte Unterhypergraphen H_1,…,H_p derart gibt, dass jedes H_i strikt f_i-degeneriert ist. Dies bedeutet, dass jeder Unterhypergraph H_i' von H_i eine Ecke v enthält, deren Grad in H_i' kleiner als f_i(v) ist. Es wird bewiesen, dass die Bedingung f_1(v)+…+f_p(v) \geq d_H(v) für alle v fast immer ausreichend für die Existenz einer solchen Zerlegung ist und gezeigt, dass sich die Ausnahmefälle gut charakterisieren lassen. Durch geeignete Wahl der Funktion f lassen sich viele bekannte Resultate ableiten, was im dritten Kapitel erörtert wird. Danach werden zwei weitere Verallgemeinerungen des Satzes von Jones bewiesen: Ein Theorem zu DP-Färbungen von Hypergraphen und ein Resultat, welches die chromatische Zahl eines Hypergraphen mit dessen maximalem lokalen Kantenzusammenhang verbindet. Der zweite Teil untersucht Färbungen gerichteter Graphen. Eine azyklische Färbung eines gerichteten Graphen ist eine Färbung der Eckenmenge des gerichteten Graphen sodass es keine monochromatischen gerichteten Kreise gibt. Auf dieses Konzept lassen sich viele klassische Färbungsresultate übertragen. Dazu zählt auch Brooks Theorem, wie von Mohar bewiesen wurde. Im siebten Kapitel werden DP-Färbungen gerichteter Graphen untersucht. Insbesondere erfolgt der Transfer von Mohars Theorem auf DP-Färbungen. Das darauffolgende Kapitel befasst sich mit kritischen gerichteten Graphen. Insbesondere werden Konstruktionen für diese angegeben und die gerichtete Version des Satzes von Hajós bewiesen.Brooks‘ Theorem is one of the most known results in graph coloring theory: Let G be a connected graph with maximum degree d >2. If G is not a complete graph, then there is a coloring of the vertices of G with d colors such that no two adjacent vertices get the same color. Based on Brooks' result, various research topics in graph coloring arose. Also, it became evident that Brooks' Theorem could be transferred to many other coloring-concepts. The present thesis puts its focus especially on two of those concepts: hypergraphs and digraphs. A coloring of a hypergraph H is a coloring of its vertices such that no edge is monochromatic. Brooks' Theorem for hypergraphs was obtained by R.P. Jones. In the first part of this thesis, we present several ways how to further extend Jones' theorem. The key element is a partition result, to which the second chapter is devoted. Given a hypergraph H and a sequence f=(f_1,…,f_p) of functions, we examine if there is a partition of HH into induced subhypergraphs H_1,…,H_p such that each of the H_i is strictly f_i-degenerate. This means that in each non-empty subhypergraph H_i' of H_i there is a vertex v having degree d_{H_i'}(v

    A special case of Vu's conjecture: Coloring nearly disjoint graphs of bounded maximum degree

    Get PDF
    A collection of graphs is \textit{nearly disjoint} if every pair of them intersects in at most one vertex. We prove that if G1,…,GmG_1, \dots, G_m are nearly disjoint graphs of maximum degree at most DD, then the following holds. For every fixed CC, if each vertex v∈⋃i=1mV(Gi)v \in \bigcup_{i=1}^m V(G_i) is contained in at most CC of the graphs G1,…,GmG_1, \dots, G_m, then the (list) chromatic number of ⋃i=1mGi\bigcup_{i=1}^m G_i is at most D+o(D)D + o(D). This result confirms a special case of a conjecture of Vu and generalizes Kahn's bound on the list chromatic index of linear uniform hypergraphs of bounded maximum degree. In fact, this result holds for the correspondence (or DP) chromatic number and thus implies a recent result of Molloy, and we derive this result from a more general list coloring result in the setting of `color degrees' that also implies a result of Reed and Sudakov.Comment: 14 pages with one-page appendix; this version adds Theorem 1.5 due to L. Postl
    • …
    corecore