67 research outputs found

    Composite Disturbance Filtering: A Novel State Estimation Scheme for Systems With Multi-Source, Heterogeneous, and Isomeric Disturbances

    Full text link
    State estimation has long been a fundamental problem in signal processing and control areas. The main challenge is to design filters with ability to reject or attenuate various disturbances. With the arrival of big data era, the disturbances of complicated systems are physically multi-source, mathematically heterogenous, affecting the system dynamics via isomeric (additive, multiplicative and recessive) channels, and deeply coupled with each other. In traditional filtering schemes, the multi-source heterogenous disturbances are usually simplified as a lumped one so that the "single" disturbance can be either rejected or attenuated. Since the pioneering work in 2012, a novel state estimation methodology called {\it composite disturbance filtering} (CDF) has been proposed, which deals with the multi-source, heterogenous, and isomeric disturbances based on their specific characteristics. With the CDF, enhanced anti-disturbance capability can be achieved via refined quantification, effective separation, and simultaneous rejection and attenuation of the disturbances. In this paper, an overview of the CDF scheme is provided, which includes the basic principle, general design procedure, application scenarios (e.g. alignment, localization and navigation), and future research directions. In summary, it is expected that the CDF offers an effective tool for state estimation, especially in the presence of multi-source heterogeneous disturbances

    Learning and Reacting with Inaccurate Prediction: Applications to Autonomous Excavation

    Get PDF
    Motivated by autonomous excavation, this work investigates solutions to a class of problem where disturbance prediction is critical to overcoming poor performance of a feedback controller, but where the disturbance prediction is intrinsically inaccurate. Poor feedback controller performance is related to a fundamental control problem: there is only a limited amount of disturbance rejection that feedback compensation can provide. It is known, however, that predictive action can improve the disturbance rejection of a control system beyond the limitations of feedback. While prediction is desirable, the problem in excavation is that disturbance predictions are prone to error due to the variability and complexity of soil-tool interaction forces. This work proposes the use of iterative learning control to map the repetitive components of excavation forces into feedforward commands. Although feedforward action shows useful to improve excavation performance, the non-repetitive nature of soil-tool interaction forces is a source of inaccurate predictions. To explicitly address the use of imperfect predictive compensation, a disturbance observer is used to estimate the prediction error. To quantify inaccuracy in prediction, a feedforward model of excavation disturbances is interpreted as a communication channel that transmits corrupted disturbance previews, for which metrics based on the sensitivity function exist. During field trials the proposed method demonstrated the ability to iteratively achieve a desired dig geometry, independent of the initial feasibility of the excavation passes in relation to actuator saturation. Predictive commands adapted to different soil conditions and passes were repeated autonomously until a pre-specified finish quality of the trench was achieved. Evidence of improvement in disturbance rejection is presented as a comparison of sensitivity functions of systems with and without the use of predictive disturbance compensation

    Flexible and robust control of heavy duty diesel engine airpath using data driven disturbance observers and GPR models

    Get PDF
    Diesel engine airpath control is crucial for modern engine development due to increasingly stringent emission regulations. This thesis aims to develop and validate a exible and robust control approach to this problem for speci cally heavy-duty engines. It focuses on estimation and control algorithms that are implementable to the current and next generation commercial electronic control units (ECU). To this end, targeting the control units in service, a data driven disturbance observer (DOB) is developed and applied for mass air ow (MAF) and manifold absolute pressure (MAP) tracking control via exhaust gas recirculation (EGR) valve and variable geometry turbine (VGT) vane. Its performance bene ts are demonstrated on the physical engine model for concept evaluation. The proposed DOB integrated with a discrete-time sliding mode controller is applied to the serial level engine control unit. Real engine performance is validated with the legal emission test cycle (WHTC - World Harmonized Transient Cycle) for heavy-duty engines and comparison with a commercially available controller is performed, and far better tracking results are obtained. Further studies are conducted in order to utilize capabilities of the next generation control units. Gaussian process regression (GPR) models are popular in automotive industry especially for emissions modeling but have not found widespread applications in airpath control yet. This thesis presents a GPR modeling of diesel engine airpath components as well as controller designs and their applications based on the developed models. Proposed GPR based feedforward and feedback controllers are validated with available physical engine models and the results have been very promisin

    Comparative Studies Of Fuzzy Logic Base Power System Stabilizers In Enhancing Dynamic Stability Of A Generator Connected To Infinite Bus

    Get PDF
    Power system stabilizers (PSS) are added to excitation system to enhance the damping during low frequency oscillations. This paper presents a study of fuzzy logic power system stabilizer for stability enhancement of a single machine connected to infinite bus (SMIB) power system. Recently fuzzy logic as a novel robust control design method has shown promising results. The emphasis in fuzzy control design center is around uncertainties in the system parameters and operating conditions. Fuzzy logic controller (FLC) has been suggested as a possible solution to overcome this problem, thereby using linguist information and avoiding a complex system mathematical model, while giving good performance under different operating conditions. The proposed approach is found to have stable convergence characteristics and resulted in good voltage regulation and damping characteristics. The stabilizing signals were computed using the fuzzy membership functions with variations of angular speed and acceleration as the inputs. The simulations were tested under different operating conditions, with different membership functions using MATLAB /SIMULINK. The simulation results are quite encouraging and satisfactory

    Design, modelling, simulation and integration of cyber physical systems: Methods and applications

    Get PDF
    The main drivers for the development and evolution of Cyber Physical Systems (CPS) are the reduction of development costs and time along with the enhancement of the designed products. The aim of this survey paper is to provide an overview of different types of system and the associated transition process from mechatronics to CPS and cloud-based (IoT) systems. It will further consider the requirement that methodologies for CPS-design should be part of a multi-disciplinary development process within which designers should focus not only on the separate physical and computational components, but also on their integration and interaction. Challenges related to CPS-design are therefore considered in the paper from the perspectives of the physical processes, computation and integration respectively. Illustrative case studies are selected from different system levels starting with the description of the overlaying concept of Cyber Physical Production Systems (CPPSs). The analysis and evaluation of the specific properties of a sub-system using a condition monitoring system, important for the maintenance purposes, is then given for a wind turbine

    Robust hovering and trajectory tracking control of a quadrotor helicopter using acceleration feedback and a novel disturbance observer

    Get PDF
    Hovering and trajectory tracking control of rotary-wing aircrafts in the presence of uncertainties and external disturbances is a very challenging task. This thesis focuses on the development of the robust hovering and trajectory tracking control algorithms for a quadrotor helicopter subject to both periodic and aperiodic disturbances along with noise and parametric uncertainties. A hierarchical control structure is employed where high-level position controllers produce reference attitude angles for the low-level attitude controllers. Reference attitude angles are usually determined analytically from the position command signals that control the positional dynamics. However, such analytical formulas may produce large and non-smooth reference angles which must be saturated and low-pass filtered. In this thesis, desired attitude angles are determined numerically using constrained nonlinear optimization where certain magnitude and rate constraints are imposed. Furthermore, an acceleration based disturbance observer (AbDOB) is designed to estimate and suppress disturbances acting on the positional dynamics of the quadrotor. For the attitude control, a nested position, velocity, and inner acceleration feedback control structure consisting of PID and PI type controllers are developed to provide high sti ness against external disturbances. Reliable angular acceleration is estimated through an extended Kalman filter (EKF) cascaded with a classical Kalman lter (KF). This thesis also proposes a novel disturbance observer which consists of a bank of band-pass filters connected parallel to the low-pass filter of a classical disturbance observer. Band-pass filters are centered at integer multiples of the fundamental frequency of the periodic disturbance. Number and bandwidth of the band-pass filters are two crucial parameters to be tuned in the implementation of the new structure. Proposed disturbance observer is integrated with a sliding mode controller to tackle the robust hovering and trajectory tracking control problem. The sensitivity of the proposed disturbance observer based control system to the number and bandwidth of the band-pass filters are thoroughly investigated via several simulations. Simulations are carried out on a high delity model where sensor biases and measurement noise are also considered. Results show that the proposed controllers are very effective in providing robust hovering and trajectory tracking performance when the quadrotor helicopter is subject to the wind gusts generated by the Dryden wind model along with plant uncertainties and measurement noise. A comparison with the classical disturbance observer-based control is also provided where better tracking performance with improved robustness is achieved in the presence of noise and external disturbance

    Entwurf eines Beobachterbasierten Robusten Nichtlinearen Reglers

    Get PDF
    Due to observers ability in the estimation of internal system states, observers play an important role in the field of control and monitoring of dynamical systems. In reality, using sensors to measure the desired system states may be costly and/or affects the reliability of technical systems. Besides, some signals are impractical or inaccessible to be measured and using of sensors leads to significant errors such as stochastic noise. The solution of using observers is well-known since 1964. Besides the estimation of system states, some observers are able to estimate unknown inputs affecting the system dynamics such as disturbance forces or torques. These features are helpful for supervision and fault diagnosis tasks by monitoring the sensors and system components or for advanced control purposes by realizing observer-based control for practical systems. Among the state and disturbance observers, Proportional-Integral-Observer (PIO) is highly appreciated because of its simple structure and design procedure. Furthermore, using sufficiently high gain PIO, a robust estimation of system states and unknown inputs can be achieved. Besides taking the advantages of high gain design, the disadvantages of large overshoot and strong influence from measurement noise (as typical drawbacks of high gain utilization) in the control and estimation performance can not be neglected. Recently, some researches have been done to overcome the disadvantages of high gain observers and to adaptively adjust the gain of observer based on the resulting actual performance. Considering the advantages and disadvantages of high gain PIO besides the recent developments, it is evident that there are still open problems and questions to be solved in the area of optimal design of PIO and robust nonlinear control approaches based on PIO. On the other hand, the PI-Observer can be used in combination with linear/nonlinear control approaches (due to its simple structure and capability to estimate the system states and disturbances) to improve the performance and robustness of the closed-loop control results. Therefore, this thesis focuses on development and improvement of high gain Proportional-Integral-Observer as well as utilization of this observer in combination with well-known robust control approaches for possible general application in nonlinear systems. The Modified Advanced PIO (MAPIO) is introduced in this work as the extended version of Advanced PIO (APIO) to tune the gain of PIO according to the current situation. A cost function is defined so that the estimation performance and the related energy can be evaluated. Comparison between advanced observer design approaches has been done in the task of reconstructing the nonlinear characteristics and estimating the external inputs (contact forces) acting to elastic mechanical structures. Simulation results in open-loop and closed-loop cases verified that the performance of MAPIO in the task of unknown input estimation is more robust to different levels of measurement noise in comparison to previous methods e.g. APIO and standard high/low gain PIO. Furthermore, a new gain design approach of Proportional-Integral-Observer is proposed to overcome the disadvantages of high gain PIO and to realize the estimation of fast dynamical behaviors like unknown impact force. The dynamics of this force input is assumed as unknown. The idea of funnel control is taking into consideration to design the PIO gain. The important advantage of the proposed approach compared to previously published PIO gain design is the self-adjustment of observer gains according to the actual estimation situation inside the predefined funnel area. In this thesis it is shown that the proposed funnel PI-Observer algorithm allows adaptive PIO gain calculation, being able to be situatively adjusted even in the presence of measurement noise. Stability proof of funnel PI-Observer is investigated according to the switching observer condition and Lyapunov theory. The effectiveness of the proposed method is evaluated by simulation and experimental results using an elastic beam test rig. Furthermore, a nonlinear MIMO mechanical system is used to verify the effectiveness of the proposed method in the closed-loop context. Additionally, this thesis provides two new PI-Observer-based robust controllers as PIO-based sliding mode control and PIO-based backstepping control to improve the position tracking performance of a hydraulic differential cylinder system in the presence of uncertainties e.g. modeling errors, disturbances, and measurement noise. To use the linear PIO for estimation of system states and unknown inputs, the input-output feedback linearization approach is used to linearize the nonlinear model of hydraulic differential cylinder system. Thereupon the result of state and unknown input estimation is integrated into the structure of robust control design (here SMC and backstepping control) to eliminate the effects of uncertainties and disturbances. The introduced PIO-based robust controllers guarantee the ultimate boundness of the tracking error in the presence of uncertainties. The closed-loop stability is proved using Lyapunov theory in both cases. The proposed methods are experimentally validated and the results are compared with the standard SMC and industrial standard approach P-Controller in the presence of measurement noise, model uncertainties, and external disturbances. A general comparison of SMC and backstepping control approaches is provided in the last part of this work.Die Regelung und Überwachung dynamischer Systeme kann voraussetzen, dass Informationen über interne Systemzustände bekannt sind. Die Verwendung von Sensoren zur Erfassung aller Systemzustände kann erhöhte Kosten zur Folge haben und die Systemzuverlässigkeit negativ beeinflussen. Weitere Probleme ergeben sich dadurch, dass ggf. nicht jeder Systemzustand sensorisch erfasst werden kann. Der Beobachter erlaubt die Rekonstruktion aller Systemzustände auf Grundlage weniger Messungen. Neben Systemzuständen können externe Eingangsgrößen wie Reibmomente und Störungen geschätzt werden. Als Konsequenz ermöglicht der Beobachter eine gegenüber Störungen robuste Regelung und Fehlerdiagnose technischer Systeme. Der Proportional-Integral-Observer (PIO) kann mittels bestehender Entwurfsverfahren einfach implementiert werden. Durch Anpassen der Rückkopplungsmatrix eignet sich der PIO zur kombinierten Schätzung von Zuständen und unbekannten Eingangsgrößen. In diesem Zusammenhang spielt die Wahl einer betragsmäßig großen Rückkopplungsverstärkungsmatrix, als sogenannter High Gain Ansatz, eine entscheidende Rolle. Weiterhin hängt die Performance des PIO von der unbekannten Charakteristik der zu schätzenden Eingangsgröße ab. Diese Arbeit befasst sich mit der Entwicklung optimierter Entwurfsverfahren für den Proportional-Integral-Observer und der Entwicklung und Anwendung beobachterbasierter Konzepte zur robusten Regelung nichtlinearer Systeme. In dieser Arbeit wird der modifizierte Advanced PIO (MAPIO) als erweiterte Version des Advanced PIO (APIO) eingeführt. Der Schätzfehler von MAPIO wird über ein Gütefunktional abgebildet. Das Gütefunktional wird durch Anpassung der Rückkopplungsverstärkungsmatrix an die Charakteristik der unbekannten Eingangsgröße minimiert. Die Performance der modifizierten Beobachterentwurfsansätze wird anhand eines praktischen Beispiels bewertet. Geschätzt wird eine unbekannte Kontaktkraft mit nichtlinearer Charakteristik, die auf ein mechanisches System wirkt. Anhand eines Simulationsbeispiels im offenen und geschlossenen Regelkreis wird die Performance von MAPIO gegenüber vorherigen Verfahren APIO und PIO verifiziert. Basierend auf der Idee des Funnel Reglers wird ein neuartiges Entwurfskonzept für den Proportional-Integral-Observer vorgestellt. Die Nachteile des PIO-Konzeptes mit hohem Verstärkungsfaktor können überwunden werden und Schätzungen schneller dynamischer Verhaltensweisen lassen sich realisieren. Der Vorteil der neuartigen Funnel PIO Methode ist, dass der Schätzfehler in einem definierten Bereich, der sogenannten Funnel-Area, verbleibt. In dieser Arbeit wird gezeigt, dass der vorgeschlagene Funnel PIO Algorithmus eine adaptive PIO Verstärkungsberechnung ermöglicht, die auch in Gegenwart von Messrauschen situativ eingestellt werden kann. Der Stabilitätsnachweis von Funnel PIO wird mittels der Lyapunov Theorie untersucht. Die Wirksamkeit der vorgeschlagenen Methode wird durch Simulation und experimentelle Ergebnisse validiert. Eine auf einen elastischen Balken wirkende äußere Kraft mit nichtlinearer Charakteristik wird geschätzt. Ein nichtlineares MIMO System wird verwendet, um die Wirksamkeit der vorgeschlagenen Methode im geschlossenen Regelkreis zu verifizieren. In dieser Arbeit werden zwei neue PI-Observer basierte robuste Regelungen (PIO-basierte Sliding Mode und PIO-basierte Backstepping Regelung) vorgestellt. Die Positionsregelung eines hydraulischen Differentialzylinders in Gegenwart von Modellunsicherheiten, Störungen und Messrauschen wird untersucht. Zur Anwendung der PIO-basierten Störgrößenschätzung wird eine Ein-/Ausgangs-Linearisierung des nichtlinearen Modells vorgenommen. Die Stabilität des geschlossenen Regelkreises wird in beiden Fällen mit der Lyapunov Theorie bewiesen. Die vorgeschlagenen Methoden werden experimentell validiert und die Ergebnisse werden mit dem Standard Sliding Mode Regler und einem P-Regler in Gegenwart von Messrauschen, Modellunsicherheiten und externen Störungen verglichen

    Nonlinear Systems

    Get PDF
    Open Mathematics is a challenging notion for theoretical modeling, technical analysis, and numerical simulation in physics and mathematics, as well as in many other fields, as highly correlated nonlinear phenomena, evolving over a large range of time scales and length scales, control the underlying systems and processes in their spatiotemporal evolution. Indeed, available data, be they physical, biological, or financial, and technologically complex systems and stochastic systems, such as mechanical or electronic devices, can be managed from the same conceptual approach, both analytically and through computer simulation, using effective nonlinear dynamics methods. The aim of this Special Issue is to highlight papers that show the dynamics, control, optimization and applications of nonlinear systems. This has recently become an increasingly popular subject, with impressive growth concerning applications in engineering, economics, biology, and medicine, and can be considered a veritable contribution to the literature. Original papers relating to the objective presented above are especially welcome subjects. Potential topics include, but are not limited to: Stability analysis of discrete and continuous dynamical systems; Nonlinear dynamics in biological complex systems; Stability and stabilization of stochastic systems; Mathematical models in statistics and probability; Synchronization of oscillators and chaotic systems; Optimization methods of complex systems; Reliability modeling and system optimization; Computation and control over networked systems

    Automatic Control and Routing of Marine Vessels

    Get PDF
    Due to the intensive development of the global economy, many problems are constantly emerging connected to the safety of ships’ motion in the context of increasing marine traffic. These problems seem to be especially significant for the further development of marine transportation services, with the need to considerably increase their efficiency and reliability. One of the most commonly used approaches to ensuring safety and efficiency is the wide implementation of various automated systems for guidance and control, including such popular systems as marine autopilots, dynamic positioning systems, speed control systems, automatic routing installations, etc. This Special Issue focuses on various problems related to the analysis, design, modelling, and operation of the aforementioned systems. It covers such actual problems as tracking control, path following control, ship weather routing, course keeping control, control of autonomous underwater vehicles, ship collision avoidance. These problems are investigated using methods such as neural networks, sliding mode control, genetic algorithms, L2-gain approach, optimal damping concept, fuzzy logic and others. This Special Issue is intended to present and discuss significant contemporary problems in the areas of automatic control and the routing of marine vessels
    corecore