52 research outputs found

    Antenna Systems

    Get PDF
    This book offers an up-to-date and comprehensive review of modern antenna systems and their applications in the fields of contemporary wireless systems. It constitutes a useful resource of new material, including stochastic versus ray tracing wireless channel modeling for 5G and V2X applications and implantable devices. Chapters discuss modern metalens antennas in microwaves, terahertz, and optical domain. Moreover, the book presents new material on antenna arrays for 5G massive MIMO beamforming. Finally, it discusses new methods, devices, and technologies to enhance the performance of antenna systems

    Optimization and Communication in UAV Networks

    Get PDF
    UAVs are becoming a reality and attract increasing attention. They can be remotely controlled or completely autonomous and be used alone or as a fleet and in a large set of applications. They are constrained by hardware since they cannot be too heavy and rely on batteries. Their use still raises a large set of exciting new challenges in terms of trajectory optimization and positioning when they are used alone or in cooperation, and communication when they evolve in swarm, to name but a few examples. This book presents some new original contributions regarding UAV or UAV swarm optimization and communication aspects

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Antenna Designs for 5G/IoT and Space Applications

    Get PDF
    This book is intended to shed some light on recent advances in antenna design for these new emerging applications and identify further research areas in this exciting field of communications technologies. Considering the specificity of the operational environment, e.g., huge distance, moving support (satellite), huge temperature drift, small dimension with respect to the distance, etc, antennas, are the fundamental device allowing to maintain a constant interoperability between ground station and satellite, or different satellites. High gain, stable (in temperature, and time) performances, long lifecycle are some of the requirements that necessitates special attention with respect to standard designs. The chapters of this book discuss various aspects of the above-mentioned list presenting the view of the authors. Some of the contributors are working strictly in the field (space), so they have a very targeted view on the subjects, while others with a more academic background, proposes futuristic solutions. We hope that interested reader, will find a fertile source of information, that combined with their interest/background will allow efficiently exploiting the combination of these two perspectives

    Advanced Radio Frequency Antennas for Modern Communication and Medical Systems

    Get PDF
    The main objective of this book is to present novel radio frequency (RF) antennas for 5G, IOT, and medical applications. The book is divided into four sections that present the main topics of radio frequency antennas. The rapid growth in development of cellular wireless communication systems over the last twenty years has resulted in most of world population owning smartphones, smart watches, I-pads, and other RF communication devices. Efficient compact wideband antennas are crucial in RF communication devices. This book presents information on planar antennas, cavity antennas, Vivaldi antennas, phased arrays, MIMO antennas, beamforming phased array reconfigurable Pabry-Perot cavity antennas, and time modulated linear array

    Aeronautical engineering: A continuing bibliography with indexes (supplement 253)

    Get PDF
    This bibliography lists 637 reports, articles, and other documents introduced into the NASA scientific and technical information system in May, 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Underwater & out of sight: towards ubiquity in underwater robotics

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2019.The Earth's oceans holds a wealth of information currently hidden from us. Effective measurement of its properties could provide a better understanding of our changing climate and insights into the creatures that inhabit its waters. Autonomous underwater vehicles (AUVs) hold the promise of penetrating the ocean environment and uncovering its mysteries; and progress in underwater robotics research over the past three decades has resulted in vehicles that can navigate reliably and operate consistently, providing oceanographers with an additional tool for studying the ocean. Unfortunately, the high cost of these vehicles has stifled the democratization of this technology. We believe that this is a consequence of two factors. Firstly, reliable navigation on conventional AUVs has been achieved through the use of a sophisticated sensor system, namely the Doppler velocity log (DVL)-aided inertial navigation system (INS), which drives up vehicle cost, power use and size. Secondly, deployment of these vehicles is expensive and unwieldy due to their complexity, size and cost, resulting in the need for specialized personnel for vehicle operation and maintenance. The recent development of simpler, low-cost, miniature underwater robots provides a solution that mitigates both these factors; however, removing the expensive DVL-aided INS means that they perform poorly in terms of navigation accuracy. We address this by introducing a novel acoustic system that enables AUV self-localization without requiring a DVL-aided INS or on-board active acoustic transmitters. We term this approach Passive Inverted Ultra-Short Baseline (piUSBL) positioning. The system uses a single acoustic beacon and a time-synchronized, vehicle-mounted, passive receiver array to localize the vehicle relative to this beacon. Our approach has two unique advantages: first, a single beacon lowers cost and enables easy deployment; second, a passive receiver allows the vehicle to be low-power, low-cost and small, and enables multi-vehicle scalability. Providing this new generation of small and inexpensive vehicles with accurate navigation can potentially lower the cost of entry into underwater robotics research and further its widespread use for ocean science. We hope that these contributions in low-cost underwater navigation will enable the ubiquitous and coordinated use of robots to explore and understand the underwater domain.This research was funded and supported by a number of sponsors; we gratefully acknowledge them below. Defense Advanced Research Projects Agency (DARPA) and SSC Pacific via Applied Physical Sciences Corp. (APS) under contract number N66001-11-C-4115. SSC Pacific via Applied Physical Sciences Corp. (APS) under award number N66001-14-C-4031. Air Force via Lincoln Laboratory under award number FA8721-05-C-0002. Office of Naval Research (ONR) via University of California-San Diego under award number N00014-13-1-0632. Defense Advanced Research Projects Agency (DARPA) via Applied Physical Sciences Corp. (APS) under award number HR0011-18-C-0008. Office of Naval Research (ONR) under award number N00014-17-1-2474

    The direction finder based on the passive multichannel detection of the electromagnetic signal

    Get PDF
    Пасивно ΠΎΠ΄Ρ€Π΅Ρ’ΠΈΠ²Π°ΡšΠ΅ ΠΏΡ€Π°Π²Ρ†Π° Π΄ΠΎΠ»Π°Π·Π΅Ρ›Π΅Π³ СлСктромагнСтског таласа (passive direction finding - DF) јС јСдна ΠΎΠ΄ Ρ‚Π΅Ρ…Π½ΠΈΡ‡ΠΊΠΈΡ… дисциплина стандардно ΠΏΡ€ΠΈΠΌΠ΅ΡšΠΈΠ²Π°Π½Π° Ρƒ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΠΌ Ρ†ΠΈΠ²ΠΈΠ»Π½ΠΈΠΌ ΠΈ војним областима. Π’ΠΈΠΏΠΈΡ‡Π°Π½ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ су пасивни систСми Π·Π° Ρ€Π°Π½Ρƒ Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΡ˜Ρƒ Π±ΠΎΡ€Π±Π΅Π½Π΅ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ΅ која Π΅ΠΌΠΈΡ‚ΡƒΡ˜Π΅ СлСктромагнСтско Π·Ρ€Π°Ρ‡Π΅ΡšΠ΅, ΠΊΠ°ΠΎ ΡˆΡ‚ΠΎ су Π»Π΅Ρ‚Π΅Π»ΠΈΡ†Π΅ ΠΈΠ»ΠΈ ΠΏΠ»ΠΎΠ²ΠΈΠ»Π° са Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€Π°Π½ΠΈΠΌ Ρ€Π°Π΄Π°Ρ€ΠΈΠΌΠ°. Π£ области Ρ†ΠΈΠ²ΠΈΠ»Π½Π΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅, ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±Π° DF-Π° јС ΠΌΠ½ΠΎΠ³ΠΎ Ρ€Π°Π·Π½ΠΎΠ²Ρ€ΡΠ½ΠΈΡ˜Π° ΠΈ масовнија, ΠΏΠ° сС Ρ‚Π°ΠΊΠ²ΠΈ систСми рутински користС Ρƒ сврху Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΡ˜Π΅ ΠΏΠΎΠΊΡ€Π΅Ρ‚Π½ΠΈΡ… ΠΈ стационарних ΠΈΠ·Π²ΠΎΡ€Π° Π·Ρ€Π°Ρ‡Π΅ΡšΠ°, ΠΏΡ€Π΅ΠΏΠΎΠ·Π½Π°Π²Π°ΡšΠ° ΠΈ ΠΎΡ‚ΠΊΠ»Π°ΡšΠ°ΡšΠ° ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ˜Π΅ Ρƒ Ρ€Π°Π΄ΠΈΠΎ-Π²Π΅Π·Π°ΠΌΠ°, Π»ΠΎΡ†ΠΈΡ€Π°ΡšΡƒ Π½Π΅Π°ΡƒΡ‚ΠΎΡ€ΠΈΠ·ΠΎΠ²Π°Π½ΠΈΡ… ΠΏΡ€Π΅Π΄Π°Ρ˜Π½ΠΈΠΊΠ°, Ρƒ сигурносним ΠΈ бСзбСдносним сСрвисима, ΠΈΡ‚Π΄. Π—Π±ΠΎΠ³ ΡˆΠΈΡ€ΠΎΠΊΠ΅ области ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅, DF систСми ΠΌΠΎΠ³Ρƒ Π±ΠΈΡ‚ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… карактСристика, ΠΊΠ°ΠΎ ΡˆΡ‚ΠΎ су: Π°) портабилност – могућност ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Ρ†ΠΈΡ˜Π΅ ΡƒΡ€Π΅Ρ’Π°Ρ˜Π° Ρƒ ΠΌΠ°Π»Π΅ прСносивС систСмС, ΠΈΠ»ΠΈ ΠΌΠ°Π»Π΅ ΠΏΠΎΠΊΡ€Π΅Ρ‚Π½Π΅ систСмС (бСспилотна Π»Π΅Ρ‚Π΅Π»ΠΈΡ†Π°, Π»Π°ΠΊΠΎ тСрСнско Π²ΠΎΠ·ΠΈΠ»ΠΎ, ΠΏΠ°Ρ‚Ρ€ΠΎΠ»Π½ΠΈ Ρ‡Π°ΠΌΠ°Ρ†, ΠΈ Π΄Ρ€.); Π±) Ρ€Π°Π΄ Ρƒ Ρ€Π΅Π°Π»Π½ΠΎΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½Ρƒ; Π²) Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΡ˜Π° Π·Ρ€Π°Ρ‡Π΅ΡšΠ° Π½Π° вишС Ρ„Ρ€Π΅ΠΊΠ²Π΅Π½Ρ†ΠΈΡ˜ΡΠΊΠΈΡ… ΠΊΠ°Π½Π°Π»Π°, ΠΈΡ‚Π΄. Π”Π° Π±ΠΈ сС испунили Ρ‚Π°ΠΊΠΎ спСцифични Π·Π°Ρ…Ρ‚Π΅Π²ΠΈ, ΠΏΠΎΡ‚Ρ€Π΅Π±Π½ΠΎ јС систСмски приступити Π΄ΠΈΠ·Π°Ρ˜Π½Ρƒ, ΡˆΡ‚ΠΎ јС Π³Π»Π°Π²Π½Π° Ρ‚Π΅ΠΌΠ° докторскС Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π΅. Како јС Π·Π° Π°ΠΊΠ²ΠΈΠ·ΠΈΡ†ΠΈΡ˜Ρƒ Π±ΠΈΠ»ΠΎ којС Ρ„ΠΈΠ·ΠΈΡ‡ΠΊΠ΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ ΠΏΠΎΡ‚Ρ€Π΅Π±Π°Π½ ΠΎΠ΄Π³ΠΎΠ²Π°Ρ€Π°Ρ˜ΡƒΡ›ΠΈ сСнзор, Π°ΠΊΠ²ΠΈΠ·ΠΈΡ†ΠΈΡ˜Π° СлСктромагнСтских таласа, постиТС сС ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±ΠΎΠΌ ΠΎΠ΄Π³ΠΎΠ²Π°Ρ€Π°Ρ˜ΡƒΡ›ΠΈΡ… Π°Π½Ρ‚Π΅Π½Π°, којС су Ρƒ DF Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ°ΠΌΠ° Ρ‚ΠΈΠΏΠΈΡ‡Π½ΠΎ интСгрисанС Ρƒ ΠΎΠ΄Π³ΠΎΠ²Π°Ρ€Π°Ρ˜ΡƒΡ›ΠΈ антСнски Π½ΠΈΠ·. Π—Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Ρƒ дСфинисану Ρƒ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜ΠΈ, ΠΏΠΎΡΡ‚ΠΎΡ˜ΠΈ вишС Ρ‚ΠΈΠΏΠΎΠ²Π° ΠΏΠΎΠ³ΠΎΠ΄Π½ΠΈΡ… Π°Π½Ρ‚Π΅Π½Π°. Π‘Π° Ρ†ΠΈΡ™Π΅ΠΌ ΡΠ΅Π»Π΅ΠΊΡ†ΠΈΡ˜Π΅ ΠΎΠ΄Π³ΠΎΠ²Π°Ρ€Π°Ρ˜ΡƒΡ›Π΅ Π°Π½Ρ‚Π΅Π½Π΅ Π½Π°ΠΏΡ€Π°Π²Ρ™Π΅Π½ јС ΠΏΡ€Π΅Π³Π»Π΅Π΄ најпогоднијС класС Π°Π½Ρ‚Π΅Π½Π° – Π°Π½Ρ‚Π΅Π½Π΅ Ρ…ΠΎΡ€Π½ Ρ‚ΠΈΠΏΠ°, ΠΈ Π·Π°ΠΊΡ™ΡƒΡ‡Π΅Π½ΠΎ јС Π΄Π° јС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°Π»Π½ΠΈ Ρ…ΠΎΡ€Π½ Π½Π°Ρ˜Π±ΠΎΡ™Π΅ Ρ€Π΅ΡˆΠ΅ΡšΠ΅. Π¦ΠΈΡ™ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΏΡ€ΠΎΡ†Π΅ΡΠΈΡ€Π°ΡšΠ° сигнала Π΄ΠΎΠ±ΠΈΡ˜Π΅Π½ΠΈΡ… са антСнског Π½ΠΈΠ·Π° ΠΊΠ°ΠΎ сСнзора јС ΠΎΠ΄Ρ€Π΅Ρ’ΠΈΠ²Π°ΡšΠ΅ ΠΏΡ€Π°Π²Ρ†Π° Π΄ΠΎΠ»Π°Π·Π΅Ρ›Π΅Π³ СлСктромагнСтског сигнала. ΠœΠΎΠ³Ρƒ Π΄Π° Π±ΡƒΠ΄Ρƒ Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π΅ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΠΌ Ρ‚ΠΈΠΏΠΎΠ²ΠΈΠΌΠ° Π°Π»Π³ΠΎΡ€ΠΈΡ‚Π°ΠΌΠ°, ΠΏΠ° сС сходно Ρ‚ΠΎΠΌΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ мСђусобно ΠΈ Ρ€Π°Π·Π»ΠΈΠΊΡƒΡ˜Ρƒ. Иако ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅ супСр-Ρ€Π΅Π·ΠΎΠ»ΡƒΡ†ΠΈΠΎΠ½Π΅ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ΅ којС Π΄Π°Ρ˜Ρƒ Π½Π°Ρ˜Π±ΠΎΡ™Π΅ Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚Π΅ ΠΏΠΎ ΠΏΠΈΡ‚Π°ΡšΡƒ Ρ€Π΅Π·ΠΎΠ»ΡƒΡ†ΠΈΡ˜Π΅, ΠΎΠ½Π΅ нису СфикаснС ΠΈ ΠΏΠΎΠ³ΠΎΠ΄Π½Π΅ Π·Π° Ρ€Π°Π΄ Ρƒ ΠΏΠΎΡ€Ρ‚Π°Π±ΠΈΠ»Π½ΠΈΠΌ систСмима, Ρ‚Π°ΠΊΠΎ Π΄Π° јС Π·Π° дизајн ΠΎΠ΄Π°Π±Ρ€Π°Π½Π° јСдна ΠΎΠ΄ класичних Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ° амплитудског Ρ‚ΠΈΠΏΠ°. АнализиранС су основнС Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ΅ амплитудског Ρ‚ΠΈΠΏΠ° ΠΈ ΠΎΠ΄Π°Π±Ρ€Π°Π½Π° јС најпогоднија са ΡΡ‚Π°Π½ΠΎΠ²ΠΈΡˆΡ‚Π° Сфикасности хардвСрскС ΠΈ софтвСрскС Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΡ˜Π΅, ΠΊΠ°ΠΎ ΠΈ са ΡΡ‚Π°Π½ΠΎΠ²ΠΈΡˆΡ‚Π° ΡƒΠ²Π΅Π΄Π΅Π½ΠΎΠ³ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΡ˜ΡƒΠΌΠ° – амплитудског Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΎΠ³ опсСга. ΠžΠ΄Ρ€Π΅Ρ’ΠΈΠ²Π°ΡšΠ΅ ΠΏΡ€Π°Π²Ρ†Π° СлСктромагнСтског сигнала ΠΈΠ· јСдног ΠΈΠ·Π²ΠΎΡ€Π°, ΡƒΠΊΠΎΠ»ΠΈΠΊΠΎ Π½Π΅ΠΌΠ° Π΄ΠΎΠ΄Π°Ρ‚Π½ΠΈΡ… Π½Π°Ρ€ΡƒΡˆΠ°Π²Π°Ρ˜ΡƒΡ›ΠΈΡ… Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°, Ρ€Π΅Π»Π°Ρ‚ΠΈΠ²Π½ΠΎ јС Π»Π°ΠΊΠΎ Ρ€Π΅ΡˆΠΈΠ² ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ. ΠžΠ·Π±ΠΈΡ™Π°Π½ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ Π½Π°ΡΡ‚Π°Ρ˜Π΅ ΠΊΠ°Π΄Π° сС Ρ€Π°Π΄ΠΈ ΠΎ вишС ΠΈΠ·Π²ΠΎΡ€Π° ΠΈ који су ΠΏΡ€ΠΈ Ρ‚ΠΎΠΌ Ρ„ΠΈΠ·ΠΈΡ‡ΠΊΠΈ блиски, ΠΏΠ° ΠΎΠ΄Ρ€Π΅Ρ’ΠΈΠ²Π°ΡšΠ° ΠΏΡ€Π°Π²Ρ†Π° Π·Π° сваки ΠΎΠ΄ ΡšΠΈΡ… ΠΌΠΎΠΆΠ΅ Π΄Π° Π±ΡƒΠ΄Π΅ Ρƒ ΠΎΠΏΡˆΡ‚Π΅ΠΌ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ Π½Π΅Ρ€Π΅ΡˆΠΈΠ². Π‘ΡƒΠΏΠ΅Ρ€-Ρ€Π΅Π·ΠΎΠ»ΡƒΡ†ΠΈΠΎΠ½ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ, судСћи ΠΏΡ€Π΅ΠΌΠ° Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ, ΠΌΠΎΠ³Ρƒ Π΄Π° Ρ€Π΅ΡˆΠ΅ Ρ‚Π°Ρ˜ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ Ρƒ Π²Π΅Π»ΠΈΠΊΠΎΠΌ Π±Ρ€ΠΎΡ˜Ρƒ ΡΠ»ΡƒΡ‡Π°Ρ˜Π΅Π²Π°, Π°Π»ΠΈ ΠΏΠΎ Ρ†Π΅Π½Ρƒ Π±Ρ€Π·ΠΈΠ½Π΅, Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ ΠΎΠΏΡ€Π΅ΠΌΠ΅, ΠΏΠΎΡ‚Ρ€ΠΎΡˆΡšΠ΅ Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Π΅, ΠΈΡ‚Π΄. Ако јС ΠΏΠΎΡ‚Ρ€Π΅Π±Π½ΠΎ ΠΏΠΎΡ€Ρ‚Π°Π±ΠΈΠ»Π½ΠΎ Ρ€Π΅ΡˆΠ΅ΡšΠ΅ ΠΎΠ½Π΄Π° јС Ρ‚Π°Ρ˜ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ Ρƒ основи Π½Π΅Ρ€Π΅ΡˆΠΈΠ². Π£ пракси, Ρ„ΠΈΠ·ΠΈΡ‡ΠΊΠΈ блиски ΠΈΠ·Π²ΠΎΡ€ΠΈ Π΅ΠΌΠΈΡ‚ΡƒΡ˜Ρƒ Π·Ρ€Π°Ρ‡Π΅ΡšΠ΅ Π½Π° Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΠΌ Ρ„Ρ€Π΅ΠΊΠ²Π΅Π½Ρ†ΠΈΡ˜ΡΠΊΠΈΠΌ ΠΊΠ°Π½Π°Π»ΠΈΠΌΠ°, ΠΏΠ° јС сукцСсивном Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΡ˜ΠΎΠΌ ΠΏΠΎ сваком ΠΊΠ°Π½Π°Π»Ρƒ ΠΌΠΎΠ³ΡƒΡ›Π΅ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΠ²Π°Ρ‚ΠΈ ΠΈ свС Ρ‚Π°ΠΊΠ²Π΅ ΠΈΠ·Π²ΠΎΡ€Π΅. Π’Π°ΠΊΠ°Π² поступак јС Π½Π°Π·Π²Π°Π½ вишСканална Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΡ˜Π°. ΠŸΠΎΡˆΡ‚ΠΎ сС антСнски Π½ΠΈΠ· ΠΊΠ°ΠΎ сСнзор користи Π½Π° вишС Ρ„Ρ€Π΅ΠΊΠ²Π΅Π½Ρ†ΠΈΡ˜Π°, њСговС карактСристикС нису истС Π·Π° сваки Ρ„Ρ€Π΅ΠΊΠ²Π΅Π½Ρ†ΠΈΡ˜ΡΠΊΠΈ ΠΊΠ°Π½Π°Π». Π£Π· Ρ‚ΠΎ Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚ΠΈ антСнског Π½ΠΈΠ·Π°, Ρƒ ΠΎΠΏΡˆΡ‚Π΅ΠΌ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ, Π½Π΅ΠΌΠ°Ρ˜Ρƒ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ‡Π½Π΅ карактСристикС, Π±Π΅Π· ΠΎΠ±Π·ΠΈΡ€Π° Π½Π° исту Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ˜Ρƒ. Π—Π±ΠΎΠ³ Ρ‚ΠΎΠ³Π° јС Ρƒ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜ΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ поступак ΠΊΠ°Π»ΠΈΠ±Ρ€Π°Ρ†ΠΈΡ˜Π΅ ΠΏΠΎ свим Π°Π½Ρ‚Π΅Π½Π°ΠΌΠ°, ΠΈ ΠΏΠΎ свим Ρ„Ρ€Π΅ΠΊΠ²Π΅Π½Ρ†ΠΈΡ˜ΡΠΊΠΈΠΌ ΠΊΠ°Π½Π°Π»ΠΈΠΌΠ°, ΠΊΠ°ΠΎ ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€Π°ΡšΠ΅ ΠΎΠ΄Π³ΠΎΠ²Π°Ρ€Π°Ρ˜ΡƒΡ›Π΅ Ρ‚Π°Π±Π΅Π»Π΅ ΠΏΡ€Π΅Ρ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° која ΠΎΠΌΠΎΠ³ΡƒΡ›ΡƒΡ˜Π΅ каснијС Π±Ρ€Π·ΠΎ ΠΏΡ€ΠΎΡ†Π΅ΡΠΈΡ€Π°ΡšΠ΅ ΠΏΠΎΠ΄Π°Ρ‚Π°ΠΊΠ°. ВСорСтски, Π·Π° дСфинисану ΠΏΡ€ΠΈΠΌΠ΅Π½Ρƒ, сваки Ρ†ΠΈΡ€ΠΊΡƒΠ»Π°Ρ€Π½ΠΈ антСнски Π½ΠΈΠ· са усмСрСним Π°Π½Ρ‚Π΅Π½Π°ΠΌΠ° ΠΏΡ€ΠΈΠ»Π°Π³ΠΎΡ’Π΅Π½ΠΈΠΌ Π·Π° дСфинисани Ρ„Ρ€Π΅ΠΊΠ²Π΅Π½Ρ†ΠΈΡ˜ΡΠΊΠΈ опсСг, ΠΌΠΎΠ³Π°ΠΎ Π±ΠΈ Π΄Π° послуТи сврси. ΠœΠ΅Ρ’ΡƒΡ‚ΠΈΠΌ ΠΊΠ°ΠΊΠΎ јС Ρƒ ΠΏΠΈΡ‚Π°ΡšΡƒ ΠΏΠΎΡ€Ρ‚Π°Π±ΠΈΠ»Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π°, Ρ†ΠΈΡ™ јС ΡƒΠΊΠ»Π°ΠΏΠ°ΡšΠ΅ Ρƒ Π·Π°Π΄Π°Ρ‚Π΅ димСнзијС, односно ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ˜Π° Π³Π°Π±Π°Ρ€ΠΈΡ‚Π° ΠΈ ΠΏΠΎΡ‚Ρ€Π΅Π±Π½ΠΎΠ³ Π±Ρ€ΠΎΡ˜Π° Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π° антСнског Π½ΠΈΠ·Π°. Π—Π±ΠΎΠ³ Ρ‚ΠΎΠ³Π° јС дСфинисана ΠΎΡ€ΠΈΠ³ΠΈΠ½Π°Π»Π½Π° ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π° ΠΏΡ€ΠΎΡ˜Π΅ΠΊΡ‚ΠΎΠ²Π°ΡšΠ° ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°Π»Π½ΠΈΡ… Ρ…ΠΎΡ€Π½ Π°Π½Ρ‚Π΅Π½Π°, која Ρ€Π΅Π΄Π΅Ρ„ΠΈΠ½ΠΈΡˆΠ΅ стандардни ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΡ˜ΡƒΠΌ оптималности, ΠΈ ΡƒΠ²ΠΎΠ΄ΠΈ Π΄ΠΎΠ΄Π°Ρ‚Π½Π΅ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΡ˜ΡƒΠΌΠ΅ који ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΡƒΡ˜Ρƒ самС Π°Π½Ρ‚Π΅Π½Π΅ ΠΏΠΎ ΠΏΠΈΡ‚Π°ΡšΡƒ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… ΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΡ‡ΠΊΠΈΡ… карактСристика, ΠΊΠ°ΠΎ ΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅Ρ‚Π°Π½ антСнски Π½ΠΈΠ· ΠΏΠΎ ΠΏΠΈΡ‚Π°ΡšΡƒ Π±Ρ€ΠΎΡ˜Π° ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±Ρ™Π΅Π½ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π°. ΠšΠΎΠΌΠΏΠ»Π΅Ρ‚Π°Π½ DF систСм јС Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΎΠΌ саврСмСнС Π°Π½Π°Π»ΠΎΠ³Π½ΠΎ-Π΄ΠΈΠ³ΠΈΡ‚Π°Π»Π½Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π΅ ΠΏΡ€ΠΎΡ˜Π΅ΠΊΡ‚ΠΎΠ²Π°ΡšΠ° СлСктронских систСма, ΠΊΠ°ΠΎ ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΎΠΌ робусних софтвСрских Ρ€Π΅ΡˆΠ΅ΡšΠ°. Π‘Π²ΠΈ Π±Π»ΠΎΠΊΠΎΠ²ΠΈ систСма, ΡšΠΈΡ…ΠΎΠ²Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π° ΠΈ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΡ˜Π° Π΄Π΅Ρ‚Π°Ρ™Π½ΠΎ су описани Ρƒ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜ΠΈ. Π—Π° Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½ΠΈ систСм ΠΈ ΠΏΡ€ΠΎΡ†Π΅ΡšΠ΅Π½Ρƒ Π²Π΅Ρ€ΠΎΠ²Π°Ρ‚Π½ΠΎΡ›Ρƒ Π³Ρ€Π΅ΡˆΠ°ΠΊΠ° којС сС Π³Π΅Π½Π΅Ρ€ΠΈΡˆΡƒ Ρ‚ΠΎΠΊΠΎΠΌ Ρ€Π°Π΄Π°, ΠΈΠ·Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ‚Π° јС Π²Π΅Ρ€ΠΎΠ²Π°Ρ‚Π½ΠΎΡ›Π° исправнС Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΡ˜Π΅. ΠžΠ΄Ρ€Π΅Ρ’Π΅Π½Π΅ су ΠΌΠ΅Ρ‚Ρ€ΠΎΠ»ΠΎΡˆΠΊΠ΅ карактСристикС Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½ΠΎΠ³ DF систСма, ΠΌΠ΅Ρ€Π΅ΡšΠ΅ΠΌ карактСристика ΠΏΠΎΡ˜Π΅Π΄ΠΈΠ½ΠΈΡ… склопова систСма ΠΈ Ρ†Π΅Π»ΠΎΠ³ систСма Ρƒ Ρ†Π΅Π»ΠΈΠ½ΠΈ. Π˜Π·Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ‚Π΅ су ΠΌΠ΅Ρ€Π½Π΅ нСсигурности ΠΊΠ°ΠΊΠΎ Π·Π° ΠΏΠΎΡ˜Π΅Π΄ΠΈΠ½Π°Ρ‡Π½Π΅ склоповС, Ρ‚Π°ΠΊΠΎ ΠΈ Π·Π° Ρ†Π΅ΠΎ систСм, Ρ‡ΠΈΠΌΠ΅ јС Π΄Π°Ρ‚ΠΎ Π²ΠΈΡ’Π΅ΡšΠ΅ ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±Π½Π΅ врСдности систСма.Passive radio direction finding DF is a technical discipline commonly used in many civil and military applications. Typical applications are passive early warning systems, such are aircrafts and vessels equipped with radars. In area of civil applications, DF usage is much more manifold and widespread: such systems are used for detection of moving or stationary radiation sources, in reconnaissance and cleaning interference in radio communications, localization of non-authorized transmitters, in intelligent and security systems, etc. According to widespread application area, DF systems might have different characteristic, such are: a) portability – ability of integration into small transferable or mobile systems (unmanned aircraft, light infantry vehicle, patrol boat, etc.); b) real time operation; c) different channel signals detection, etc. With an aim to be able to achieve all specific DF features, it is mandatory to perform a systematic design, what is the main topic of this doctoral dissertation. For the acquisition of any physical signal, appropriate sensor is required. For the case of acquisition of the electromagnetic waves in DF techniques, the sensor is based on convenient antenna, typically organized in corresponding antenna array. For the application given in the dissertation, there are several suitable types of antennas. In order to select appropriate antenna, an overview of all suitable antennas types – horn antennas, are given, and the conclusion is that the most suitable selection is the pyramidal horn antenna. The purpose of processing signals obtained from the antenna array as a sensor, is to determine the direction of the incoming electromagnetic signal. The processing can be achieved by several techniques, and accordingly, each differ one to another. Although, there are super-resolution techniques that provides the best results in terms of resolution, they are not efficient and suitable for portable systems applications, thus, the classical techniques with amplitude detection are selected for consideration. Basic amplitude detection techniques are analysed, and one is selected as the most suitable from the point of the software and hardware efficiency and implementation, same as from the point of the introduced criterion - amplitude dynamic range. Determination of an electromagnetic wave Direction, from unique radiation source, with no interfering conditions, is a quite easy task. The problem arises when it comes to presence of multiple, physically very close, radiation sources, so in general, determination of direction, per each of them, might be unsolvable. Super-resolution methods, according to literature, are able to solve such tasks in most of cases, for the price of speed, equipment size, energy consumption, etc. If a portable solution is requested, then this problem is essentially unsolvable. In practice, physically close sources radiate at different frequency channels, so by successive detection on each channel it is possible to detect all possible sources. Such a procedure is called multichannel detection. Since the antenna array, considered as a sensor, is used on multiple frequencies, its characteristics are not the same for each frequency channel. In addition, the elements of an antenna array do not have identical characteristics in general, regardless of the same geometry. Therefore, in the dissertation, a calibration procedure is proposed for all antennas, and at all frequency channels. Accordingly, constitution of lookup table that allows, efficient data processing is proposed. Theoretically, for a defined application, any circular antenna array with directional antennas adapted for the defined frequency range can be applied. However, the portable application is concerned, so the goal is to fit it into the given dimension, that is, minimize dimension and number of antenna array elements. For this reason, an original pyramidal horn antenna design procedure is defined, which redefines the standard optimization criterion, and introduces additional criteria for antenna optimization, in terms of electrical and mechanical characteristics, as well as the antenna array optimization in term of number of elements. The complete DF system was realized using the modern mix-signal electronic systems design methodology, and by applying the robust software solutions. Detail description of all system blocks, their function and realization is given in the dissertation. Using the estimated probability of errors generated during operation, the probability of correct detection is calculated. For the case of designed system, and the estimated probability of errors, the probability of correct detection is evaluated. The metrology characteristics of the realized DF system are determined, by measuring the characteristics of individual system components and the entire system itself. Measurement uncertainty for individual components and entre system are calculated, demonstrating the system quality value
    • …
    corecore