44 research outputs found

    Sparse Array Design via Fractal Geometries

    Full text link
    Sparse sensor arrays have attracted considerable attention in various fields such as radar, array processing, ultrasound imaging and communications. In the context of correlation-based processing, such arrays enable to resolve more uncorrelated sources than physical sensors. This property of sparse arrays stems from the size of their difference coarrays, defined as the differences of element locations. Thus, the design of sparse arrays with large difference coarrays is of great interest. In addition, other array properties such as symmetry, robustness and array economy are important in different applications. Numerous studies have proposed diverse sparse geometries, focusing on certain properties while lacking others. Incorporating multiple properties into the design task leads to combinatorial problems which are generally NP-hard. For small arrays these optimization problems can be solved by brute force, however, in large scale they become intractable. In this paper, we propose a scalable systematic way to design large sparse arrays considering multiple properties. To that end, we introduce a fractal array design in which a generator array is recursively expanded according to its difference coarray. Our main result states that for an appropriate choice of the generator such fractal arrays exhibit large difference coarrays. Furthermore, we show that the fractal arrays inherit their properties from their generators. Thus, a small generator can be optimized according to desired requirements and then expanded to create a fractal array which meets the same criteria. This approach paves the way to efficient design of large arrays of hundreds or thousands of elements with specific properties.Comment: 16 pages, 9 figures, 1 Tabl

    Sparse Array Signal Processing: New Array Geometries, Parameter Estimation, and Theoretical Analysis

    Get PDF
    Array signal processing focuses on an array of sensors receiving the incoming waveforms in the environment, from which source information, such as directions of arrival (DOA), signal power, amplitude, polarization, and velocity, can be estimated. This topic finds ubiquitous applications in radar, astronomy, tomography, imaging, and communications. In these applications, sparse arrays have recently attracted considerable attention, since they are capable of resolving O(N2) uncorrelated source directions with N physical sensors. This is unlike the uniform linear arrays (ULA), which identify at most N-1 uncorrelated sources with N sensors. These sparse arrays include minimum redundancy arrays (MRA), nested arrays, and coprime arrays. All these arrays have an O(N2)-long central ULA segment in the difference coarray, which is defined as the set of differences between sensor locations. This O(N2) property makes it possible to resolve O(N2) uncorrelated sources, using only N physical sensors. The main contribution of this thesis is to provide a new direction for array geometry and performance analysis of sparse arrays in the presence of nonidealities. The first part of this thesis focuses on designing novel array geometries that are robust to effects of mutual coupling. It is known that, mutual coupling between sensors has an adverse effect on the estimation of DOA. While there are methods to counteract this through appropriate modeling and calibration, they are usually computationally expensive, and sensitive to model mismatch. On the other hand, sparse arrays, such as MRA, nested arrays, and coprime arrays, have reduced mutual coupling compared to ULA, but all of these have their own disadvantages. This thesis introduces a new array called the super nested array, which has many of the good properties of the nested array, and at the same time achieves reduced mutual coupling. Many theoretical properties are proved and simulations are included to demonstrate the superior performance of super nested arrays in the presence of mutual coupling. Two-dimensional planar sparse arrays with large difference coarrays have also been known for a long time. These include billboard arrays, open box arrays (OBA), and 2D nested arrays. However, all of them have considerable mutual coupling. This thesis proposes new planar sparse arrays with the same large difference coarrays as the OBA, but with reduced mutual coupling. The new arrays include half open box arrays (HOBA), half open box arrays with two layers (HOBA-2), and hourglass arrays. Among these, simulations show that hourglass arrays have the best estimation performance in presence of mutual coupling. The second part of this thesis analyzes the performance of sparse arrays from a theoretical perspective. We first study the Cramér-Rao bound (CRB) for sparse arrays, which poses a lower bound on the variances of unbiased DOA estimators. While there exist landmark papers on the study of the CRB in the context of array processing, the closed-form expressions available in the literature are not applicable in the context of sparse arrays for which the number of identifiable sources exceeds the number of sensors. This thesis derives a new expression for the CRB to fill this gap. Based on the proposed CRB expression, it is possible to prove the previously known experimental observation that, when there are more sources than sensors, the CRB stagnates to a constant value as the SNR tends to infinity. It is also possible to precisely specify the relation between the number of sensors and the number of uncorrelated sources such that these sources could be resolved. Recently, it has been shown that correlation subspaces, which reveal the structure of the covariance matrix, help to improve some existing DOA estimators. However, the bases, the dimension, and other theoretical properties of correlation subspaces remain to be investigated. This thesis proposes generalized correlation subspaces in one and multiple dimensions. This leads to new insights into correlation subspaces and DOA estimation with prior knowledge. First, it is shown that the bases and the dimension of correlation subspaces are fundamentally related to difference coarrays, which were previously found to be important in the study of sparse arrays. Furthermore, generalized correlation subspaces can handle certain forms of prior knowledge about source directions. These results allow one to derive a broad class of DOA estimators with improved performance. It is empirically known that the coarray structure is susceptible to sensor failures, and the reliability of sparse arrays remains a significant but challenging topic for investigation. This thesis advances a general theory for quantifying such robustness, by studying the effect of sensor failure on the difference coarray. We first present the (k-)essentialness property, which characterizes the combinations of the faulty sensors that shrink the difference coarray. Based on this, the notion of (k-)fragility is proposed to quantify the reliability of sparse arrays with faulty sensors, along with comprehensive studies of their properties. These novel concepts provide quite a few insights into the interplay between the array geometry and its robustness. For instance, for the same number of sensors, it can be proved that ULA is more robust than the coprime array, and the coprime array is more robust than the nested array. Rigorous development of these ideas leads to expressions for the probability of coarray failure, as a function of the probability of sensor failure. The thesis concludes with some remarks on future directions and open problems.</p

    Sparse Linear Antenna Arrays: A Review

    Get PDF
    Linear sparse antenna arrays have been widely studied in array processing literature. They belong to the general class of non-uniform linear arrays (NULAs). Sparse arrays need fewer sensor elements than uniform linear arrays (ULAs) to realize a given aperture. Alternately, for a given number of sensors, sparse arrays provide larger apertures and higher degrees of freedom than full arrays (ability to detect more source signals through direction-of-arrival (DOA) estimation). Another advantage of sparse arrays is that they are less affected by mutual coupling compared to ULAs. Different types of linear sparse arrays have been studied in the past. While minimum redundancy arrays (MRAs) and minimum hole arrays (MHAs) existed for more than five decades, other sparse arrays such as nested arrays, co-prime arrays and super-nested arrays have been introduced in the past decade. Subsequent to the introduction of co-prime and nested arrays in the past decade, many modifications, improvements and alternate sensor array configurations have been presented in the literature in the past five years (2015–2020). The use of sparse arrays in future communication systems is promising as they operate with little or no degradation in performance compared to ULAs. In this chapter, various linear sparse arrays have been compared with respect to parameters such as the aperture provided for a given number of sensors, ability to provide large hole-free co-arrays, higher degrees of freedom (DOFs), sharp angular resolutions and susceptibility to mutual coupling. The chapter concludes with a few recommendations and possible future research directions

    Theory and Algorithms for Reliable Multimodal Data Analysis, Machine Learning, and Signal Processing

    Get PDF
    Modern engineering systems collect large volumes of data measurements across diverse sensing modalities. These measurements can naturally be arranged in higher-order arrays of scalars which are commonly referred to as tensors. Tucker decomposition (TD) is a standard method for tensor analysis with applications in diverse fields of science and engineering. Despite its success, TD exhibits severe sensitivity against outliers —i.e., heavily corrupted entries that appear sporadically in modern datasets. We study L1-norm TD (L1-TD), a reformulation of TD that promotes robustness. For 3-way tensors, we show, for the first time, that L1-TD admits an exact solution via combinatorial optimization and present algorithms for its solution. We propose two novel algorithmic frameworks for approximating the exact solution to L1-TD, for general N-way tensors. We propose a novel algorithm for dynamic L1-TD —i.e., efficient and joint analysis of streaming tensors. Principal-Component Analysis (PCA) (a special case of TD) is also outlier responsive. We consider Lp-quasinorm PCA (Lp-PCA) for

    Statistical Performance Analysis of Sparse Linear Arrays

    Get PDF
    Direction-of-arrival (DOA) estimation remains an important topic in array signal processing. With uniform linear arrays (ULAs), traditional subspace-based methods can resolve only up to M-1 sources using M sensors. On the other hand, by exploiting their so-called difference coarray model, sparse linear arrays, such as co-prime and nested arrays, can resolve up to O(M^2) sources using only O(M) sensors. Various new sparse linear array geometries were proposed and many direction-finding algorithms were developed based on sparse linear arrays. However, the statistical performance of such arrays has not been analytically conducted. In this dissertation, we (i) study the asymptotic performance of the MUtiple SIgnal Classification (MUSIC) algorithm utilizing sparse linear arrays, (ii) derive and analyze performance bounds for sparse linear arrays, and (iii) investigate the robustness of sparse linear arrays in the presence of array imperfections. Based on our analytical results, we also propose robust direction-finding algorithms for use when data are missing. We begin by analyzing the performance of two commonly used coarray-based MUSIC direction estimators. Because the coarray model is used, classical derivations no longer apply. By using an alternative eigenvector perturbation analysis approach, we derive a closed-form expression of the asymptotic mean-squared error (MSE) of both estimators. Our expression is computationally efficient compared with the alternative of Monte Carlo simulations. Using this expression, we show that when the source number exceeds the sensor number, the MSE remains strictly positive as the signal-to-noise ratio (SNR) approaches infinity. This finding theoretically explains the unusual saturation behavior of coarray-based MUSIC estimators that had been observed in previous studies. We next derive and analyze the Cramér-Rao bound (CRB) for general sparse linear arrays under the assumption that the sources are uncorrelated. We show that, unlike the classical stochastic CRB, our CRB is applicable even if there are more sources than the number of sensors. We also show that, in such a case, this CRB remains strictly positive definite as the SNR approaches infinity. This unusual behavior imposes a strict lower bound on the variance of unbiased DOA estimators in the underdetermined case. We establish the connection between our CRB and the classical stochastic CRB and show that they are asymptotically equal when the sources are uncorrelated and the SNR is sufficiently high. We investigate the behavior of our CRB for co-prime and nested arrays with a large number of sensors, characterizing the trade-off between the number of spatial samples and the number of temporal samples. Our analytical results on the CRB will benefit future research on optimal sparse array designs. We further analyze the performance of sparse linear arrays by considering sensor location errors. We first introduce the deterministic error model. Based on this model, we derive a closed-form expression of the asymptotic MSE of a commonly used coarray-based MUSIC estimator, the spatial-smoothing based MUSIC (SS-MUSIC). We show that deterministic sensor location errors introduce a constant estimation bias that cannot be mitigated by only increasing the SNR. Our analytical expression also provides a sensitivity measure against sensor location errors for sparse linear arrays. We next extend our derivations to the stochastic error model and analyze the Gaussian case. We also derive the CRB for joint estimation of DOA parameters and deterministic sensor location errors. We show that this CRB is applicable even if there are more sources than the number of sensors. Lastly, we develop robust DOA estimators for cases with missing data. By exploiting the difference coarray structure, we introduce three algorithms to construct an augmented covariance matrix with enhanced degrees of freedom. By applying MUSIC to this augmented covariance matrix, we are able to resolve more sources than sensors. Our method utilizes information from all snapshots and shows improved estimation performance over traditional DOA estimators
    corecore