26 research outputs found

    White Noise Reduction for Wideband Sensor Array Signal Processing

    Get PDF
    The performance of wideband array signal processing algorithms is dependant on the noise level in the system. In this thesis, a method is proposed for reducing the level of white noise in wideband arrays via a judiciously designed spatial transformation followed by a bank of high-pass filters. The method is initially introduced for uniform linear arrays (ULAs) and analysed in detail. The spectrum of the signal and noise after being processed by the proposed noise reduction method is analysed, and the correlation matrix of the processed noise is derived. The reduced noise level leads to a higher signal-to-noise ratio (SNR) for the system, which can have a significant effect on the performance improvement of various beamforming methods and other array signal processing applications such as direction of arrival (DOA) estimation. The performance of two well-known beamformers, the reference signal based (RSB) beamformer and the linearly constrained minimum variance (LCMV) beamformer is reviewed. Then, the theoretical effect of applying the proposed noise reduction method as a pre-processing step on the performance enhancement of RSB and LCMV beamformers is studied. The theoretical results are then confirmed by simulation. As a representative example of wideband DOA estimation application, a compressive sensing-based DOA estimation method is employed to demonstrate the improved estimation by applying the pre-processing noise reduction method, which is confirmed by simulation. Next, the idea is extended to wideband non-uniform linear arrays (NLAs). Since, NLA does not have a uniform spacing, the beam response of the row vectors of the transformation is distorted. Therefore, the transformation is re-designed using the least squares method to satisfy the band-pass requirements of the transformation. Simulation results show a satisfactory improvement in the the performance of RSB and LCMV beamformers for the NLA structure. The idea is further extended to uniform rectangular arrays (URAs) and uniform circular arrays (UCAs), as two major types of the planar arrays. Two methods are proposed for reducing the effect of white noise in wideband URAs and for each one, a different transformation is designed. The first one is based on a two-dimensional (2D) transformation and the second one is an adaptation of the method developed for the ULA case. The developed method for the UCA structure is based on a one-dimensional (1D) transformation, with modified modulation for the transformation to satisfy the required band-pass characteristics of the transformation. Same as linear array structures, the RSB and LCMV beamformers are used to demonstrate the performance enhancement of the method for planar arrays

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    Proceedings of the Fourth MIT/ONR Workshop on Distributed Information and Decision Systems Motivated by Command-Control-Communications (C3) Problems, June 15-June 26, 1981, San Diego, California

    Get PDF
    "OSP number 85552"--Cover.Library has v. 2 only.Includes bibliographies.Workshop suppported by the Office of Naval Research under contract ONR/N00014-77-C-0532edited by Michael Athans ... [et al.].v.1. Surveillance and target tracking--v.2. Systems architecture and evaluation--v.3. Communication, data bases & decision support--v.4. C3 theory

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems

    Efficient Robust Adaptive Beamforming Algorithms for Sensor Arrays

    Get PDF
    Sensor array processing techniques have been an important research area in recent years. By using a sensor array of a certain configuration, we can improve the parameter estimation accuracy from the observation data in the presence of interference and noise. In this thesis, we focus on sensor array processing techniques that use antenna arrays for beamforming, which is the key task in wireless communications, radar and sonar systems. Firstly, we propose a low-complexity robust adaptive beamforming (RAB) technique which estimates the steering vector using a Low-Complexity Shrinkage-Based Mismatch Estimation (LOCSME) algorithm. The proposed LOCSME algorithm estimates the covariance matrix of the input data and the interference-plus-noise covariance (INC) matrix by using the Oracle Approximating Shrinkage (OAS) method. Secondly, we present cost-effective low-rank techniques for designing robust adaptive beamforming (RAB) algorithms. The proposed algorithms are based on the exploitation of the cross-correlation between the array observation data and the output of the beamformer. Thirdly, we propose distributed beamforming techniques that are based on wireless relay systems. Algorithms that combine relay selections and SINR maximization or Minimum Mean-Square- Error (MMSE) consensus are developed, assuming the relay systems are under total relay transmit power constraint. Lastly, we look into the research area of robust distributed beamforming (RDB) and develop a novel RDB approach based on the exploitation of the cross-correlation between the received data at the relays and the destination and a subspace projection method to estimate the channel errors, namely, the cross-correlation and subspace projection (CCSP) RDB technique, which efficiently maximizes the output SINR and minimizes the channel errors. Simulation results show that the proposed techniques outperform existing techniques in various performance metrics

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin
    corecore