216 research outputs found

    Source bearing and steering-vector estimation using partially calibrated arrays

    Get PDF
    The problem of source direction-of-arrival (DOA) estimation using a sensor array is addressed, where some of the sensors are perfectly calibrated, while others are uncalibrated. An algorithm is proposed for estimating the source directions in addition to the estimation of unknown array parameters such as sensor gains and phases, as a way of performing array self-calibration. The cost function is an extension of the maximum likelihood (ML) criteria that were originally developed for DOA estimation with a perfectly calibrated array. A particle swarm optimization (PSO) algorithm is used to explore the high-dimensional problem space and find the global minimum of the cost function. The design of the PSO is a combination of the problem-independent kernel and some newly introduced problem-specific features such as search space mapping, particle velocity control, and particle position clipping. This architecture plus properly selected parameters make the PSO highly flexible and reusable, while being sufficiently specific and effective in the current application. Simulation results demonstrate that the proposed technique may produce more accurate estimates of the source bearings and unknown array parameters in a cheaper way as compared with other popular methods, with the root-mean-squared error (RMSE) approaching and asymptotically attaining the Cramer Rao bound (CRB) even in unfavorable conditions

    Direction finding with partly calibrated uniform linear arrays

    Get PDF
    A new method for direction finding with partly calibrated uniform linear arrays (ULAs) is presented. It is based on the conventional estimation of signal parameters via rotational invariance techniques (ESPRIT) by modeling the imperfections of the ULAs as gain and phase uncertainties. For a fully calibrated array, it reduces to the conventional ESPRIT algorithm. Moreover, the direction-of-arrivals (DOAs), unknown gains, and phases of the uncalibrated sensors can be estimated in closed form without performing a spectral search. Hence, it is computationally very attractive. The Cramér-Rao bounds (CRBs) of the partly calibrated ULAs are also given. Simulation results show that the root mean squared error (RMSE) performance of the proposed algorithm is better than the conventional methods when the number of uncalibrated sensors is large. It also achieves satisfactory performance even at low signal-to-noise ratios (SNRs). © 2011 IEEE.published_or_final_versio

    Array signal processing for maximum likelihood direction-of-arrival estimation

    Get PDF
    Emitter Direction-of-Arrival (DOA) estimation is a fundamental problem in a variety of applications including radar, sonar, and wireless communications. The research has received considerable attention in literature and numerous methods have been proposed. Maximum Likelihood (ML) is a nearly optimal technique producing superior estimates compared to other methods especially in unfavourable conditions, and thus is of significant practical interest. This paper discusses in details the techniques for ML DOA estimation in either white Gaussian noise or unknown noise environment. Their performances are analysed and compared, and evaluated against the theoretical lower bounds

    Three more Decades in Array Signal Processing Research: An Optimization and Structure Exploitation Perspective

    Full text link
    The signal processing community currently witnesses the emergence of sensor array processing and Direction-of-Arrival (DoA) estimation in various modern applications, such as automotive radar, mobile user and millimeter wave indoor localization, drone surveillance, as well as in new paradigms, such as joint sensing and communication in future wireless systems. This trend is further enhanced by technology leaps and availability of powerful and affordable multi-antenna hardware platforms. The history of advances in super resolution DoA estimation techniques is long, starting from the early parametric multi-source methods such as the computationally expensive maximum likelihood (ML) techniques to the early subspace-based techniques such as Pisarenko and MUSIC. Inspired by the seminal review paper Two Decades of Array Signal Processing Research: The Parametric Approach by Krim and Viberg published in the IEEE Signal Processing Magazine, we are looking back at another three decades in Array Signal Processing Research under the classical narrowband array processing model based on second order statistics. We revisit major trends in the field and retell the story of array signal processing from a modern optimization and structure exploitation perspective. In our overview, through prominent examples, we illustrate how different DoA estimation methods can be cast as optimization problems with side constraints originating from prior knowledge regarding the structure of the measurement system. Due to space limitations, our review of the DoA estimation research in the past three decades is by no means complete. For didactic reasons, we mainly focus on developments in the field that easily relate the traditional multi-source estimation criteria and choose simple illustrative examples.Comment: 16 pages, 8 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    DOA estimation and tracking of ULAs with mutual coupling

    Get PDF
    A class of subspace-based methods for direction-of-arrival (DOA) estimation and tracking in the case of uniform linear arrays (ULAs) with mutual coupling is proposed. By treating the angularly-independent mutual coupling as angularly-dependent complex array gains, the middle subarray is found to have the same complex array gains. Using this property, a new way for parameterizing the steering vector is proposed and the corresponding method for joint estimation of DOAs and mutual coupling matrix (MCM) using the whole array data is derived based on subspace principle. Simulation results show that the proposed algorithm has a better performance than the conventional subarray-based method especially for weak signals. Furthermore, to achieve low computational complexity for online and time-varying DOA estimation, three subspace tracking algorithms with different arithmetic complexities and tracking abilities are developed. More precisely, by introducing a better estimate of the subspace to the conventional tracking algorithms, two modified methods, namely modified projection approximate subspace tracking (PAST) (MPAST) and modified orthonormal PAST (MOPAST), are developed for slowly changing subspace, whereas a Kalman filter with a variable number of measurements (KFVM) method for rapidly changing subspace is introduced. Simulation results demonstrate that these algorithms offer high flexibility and effectiveness for tracking DOAs in the presence of mutual coupling. © 2006 IEEE.published_or_final_versio

    Spatial Signature Estimation with an Uncalibrated Uniform Linear Array

    Get PDF
    In this paper, the problem of spatial signature estimation using a uniform linear array (ULA) with unknown sensor gain and phase errors is considered. As is well known, the directions-of-arrival (DOAs) can only be determined within an unknown rotational angle in this array model. However, the phase ambiguity has no impact on the identification of the spatial signature. Two auto-calibration methods are presented for spatial signature estimation. In our methods, the rotational DOAs and model error parameters are firstly obtained, and the spatial signature is subsequently calculated. The first method extracts two subarrays from the ULA to construct an estimator, and the elements of the array can be used several times in one subarray. The other fully exploits multiple invariances in the interior of the sensor array, and a multidimensional nonlinear problem is formulated. A Gauss–Newton iterative algorithm is applied for solving it. The first method can provide excellent initial inputs for the second one. The effectiveness of the proposed algorithms is demonstrated by several simulation results

    Statistical Nested Sensor Array Signal Processing

    Get PDF
    Source number detection and direction-of-arrival (DOA) estimation are two major applications of sensor arrays. Both applications are often confined to the use of uniform linear arrays (ULAs), which is expensive and difficult to yield wide aperture. Besides, a ULA with N scalar sensors can resolve at most N − 1 sources. On the other hand, a systematic approach was recently proposed to achieve O(N 2 ) degrees of freedom (DOFs) using O(N) sensors based on a nested array, which is obtained by combining two or more ULAs with successively increased spacing. This dissertation will focus on a fundamental study of statistical signal processing of nested arrays. Five important topics are discussed, extending the existing nested-array strategies to more practical scenarios. Novel signal models and algorithms are proposed. First, based on the linear nested array, we consider the problem for wideband Gaussian sources. To employ the nested array to the wideband case, we propose effective strategies to apply nested-array processing to each frequency component, and combine all the spectral information of various frequencies to conduct the detection and estimation. We then consider the practical scenario with distributed sources, which considers the spreading phenomenon of sources. Next, we investigate the self-calibration problem for perturbed nested arrays, for which existing works require certain modeling assumptions, for example, an exactly known array geometry, including the sensor gain and phase. We propose corresponding robust algorithms to estimate both the model errors and the DOAs. The partial Toeplitz structure of the covariance matrix is employed to estimate the gain errors, and the sparse total least squares is used to deal with the phase error issue. We further propose a new class of nested vector-sensor arrays which is capable of significantly increasing the DOFs. This is not a simple extension of the nested scalar-sensor array. Both the signal model and the signal processing strategies are developed in the multidimensional sense. Based on the analytical results, we consider two main applications: electromagnetic (EM) vector sensors and acoustic vector sensors. Last but not least, in order to make full use of the available limited valuable data, we propose a novel strategy, which is inspired by the jackknifing resampling method. Exploiting numerous iterations of subsets of the whole data set, this strategy greatly improves the results of the existing source number detection and DOA estimation methods

    Multisource Self-calibration for Sensor Arrays

    Full text link
    Calibration of a sensor array is more involved if the antennas have direction dependent gains and multiple calibrator sources are simultaneously present. We study this case for a sensor array with arbitrary geometry but identical elements, i.e. elements with the same direction dependent gain pattern. A weighted alternating least squares (WALS) algorithm is derived that iteratively solves for the direction independent complex gains of the array elements, their noise powers and their gains in the direction of the calibrator sources. An extension of the problem is the case where the apparent calibrator source locations are unknown, e.g., due to refractive propagation paths. For this case, the WALS method is supplemented with weighted subspace fitting (WSF) direction finding techniques. Using Monte Carlo simulations we demonstrate that both methods are asymptotically statistically efficient and converge within two iterations even in cases of low SNR.Comment: 11 pages, 8 figure
    • …
    corecore