31 research outputs found

    Array imperfection calibration for wireless channel multipath characterisation

    Get PDF
    As one of the fastest growing technologies in modern telecommunications, wireless networking has become a very important and indispensable part in our life. A good understanding of the wireless channel and its key physical parameters are extremely useful when we want to apply them into practical applications. In wireless communications, the wireless channel refers to the propagation of electromagnetic radiation from a transmitter to a receiver. The estimation of multipath channel parameters, such as angle of depature (AoD), angle of arrival (AoA), and time difference of arrival (TDoA), is an active research problem and its typical applications are radar, communication, vehicle navigation and localization in the indoor environment where the GPS service is impractical. However, the performance of the parameter estimation deteriorates significantly in the presence of array imperfections, which include the mutual coupling, antenna location error, phase uncertainty and so on. These array imperfections are hardly to be calibrated completely via antenna design. In this thesis, we experimentally evaluate an B matrix method to cope with these array imperfection, our results shows a great improvement of AoA estimation results

    Radio channel characterization and channel model evaluation with measured 29 GHz data for 5G communications

    Get PDF
    Abstract. In this thesis, a radio channel measured at 29 GHz for 5G communications is analysed and a corresponding channel model is evaluated. For this purpose, we have studied two different scenarios, where the first one represents a macrocell environment and the second one a microcell environment. Both scenarios had the same fifteen user equipment antenna locations and their main difference is the location from its base station. Indeed, these two different propagation scenarios are assumed to be static during the whole measurement. Once the scenarios have been described, the delay spread, azimuth spread and path loss parameters from all the different paths that are received at each user equipment antenna are estimated. In order to do that, it has been considered whether those paths were on Line-Of-Sight or Non-Line-Of-Sight condition. As little research has been done at this frequency band for this innovative application, it is important to analyse and validate of those results. For that purpose, a MATLAB program has been designed for the automatic validation of those results, and at the same time, information about the channel behaviour is provided. Furthermore, these two scenarios have been analysed by implementing Keysight’s Geometric Channel Modeling Tool, where a reconstruction of the channel has been obtained

    Eigenbeamforming array systems for sound source localization

    Get PDF

    Indoor Localization Using Channel State Information with Regression Artificial Neural Network

    Get PDF
    RÉSUMÉ Dans cette recherche, les informations sur l'état du canal (CSI) sont utilisées pour localiser les stations mobiles dans un environnement intérieur. À cette fin, deux ordinateurs portables équipés de la carte Intel Wireless Wi-Fi Wireless Link 5300 disponible dans le commerce sont utilisés. Les informations CSI sont collectées en établissant une connexion sans fil entre deux machines de plus de 200, 70 et 52 points de référence (RP) aux sixième, cinquième et troisième étages respectivement, dans l’immeuble Lassonde de Polytechnique Montréal servant de banc d’essai expérimental. Différentes approches de localisation sont étudiées et comparées les unes aux autres en termes de précision de localisation. Dans la première approche, les CSI collectés alimentent directement le réseau de neurones artificiels (RNA) en tant que caractéristiques d’entrée et le RNA appris est utilisé en tant qu’algorithme de correspondance du modèle afin de prédire la position de l’utilisateur. La deuxième approche consiste à appliquer à l’entrée de RNA les paramètres pertinents du canal extrait représentant le nombre réduit d’entités à l’entrée de RNA. Enfin, une exploration est effectuée pour trouver la meilleure configuration de couches cachées et de facteurs d'étalement pour les réseaux Perceptron multicouche (MLP) et Réseaux de neurones à régression générale (GRNN), respectivement.----------ABSTRACT In this research, the Channel State Information (CSI) is leveraged to locate mobile stations in an indoor environment. For this purpose, two laptops equipped with the off-the-shelf Intel Wi-Fi Wireless Link 5300 (NIC card) are used. CSI information is collected by establishing a wireless connection between two machines over 200, 70 and 52 reference points (RP) on sixth, fifth, and third floors respectively, in Lassonde building of Polytechnique Montreal as the experimental testbed. Different geolocation approaches are investigated and compared with each other in terms of location accuracy and precision. In the first approach, the collected CSIs are directly fed to the artificial neural network (ANN) as input features and the learned ANN is used as the patternmatching algorithm in order to predict the user’s location. The second approach consists in applying at the input of the ANN the extracted channel relevant parameters representing the reduced number of features at the input of ANN. Finally, exploration is performed to find the best configuration of hidden layers and spread factors for Multilayer Perceptron (MLPs) and General Regression Neural Networks (GRNNs), respectively

    Compressive Acquisition and Processing of Sparse Analog Signals

    Get PDF
    Since the advent of the first digital processing units, the importance of digital signal processing has been steadily rising. Today, most signal processing happens in the digital domain, requiring that analog signals be first sampled and digitized before any relevant data can be extracted from them. The recent explosion of the demands for data acquisition, storage and processing, however, has pushed the capabilities of conventional acquisition systems to their limits in many application areas. By offering an alternative view on the signal acquisition process, ideas from sparse signal processing and one of its main beneficiaries compressed sensing (CS), aim at alleviating some of these problems. In this thesis, we look into the ways the application of a compressive measurement kernel impacts the signal recovery performance and investigate methods to infer the current signal complexity from the compressive observations. We then study a particular application, namely that of sub-Nyquist sampling and processing of sparse analog multiband signals in spectral, angular and spatial domains.Seit dem Aufkommen der ersten digitalen Verarbeitungseinheiten hat die Bedeutung der digitalen Signalverarbeitung stetig zugenommen. Heutzutage findet die meiste Signalverarbeitung im digitalen Bereich statt, was erfordert, dass analoge Signale zuerst abgetastet und digitalisiert werden, bevor relevante Daten daraus extrahiert werden können. Jahrzehntelang hat die herkömmliche äquidistante Abtastung, die durch das Nyquist-Abtasttheorem bestimmt wird, zu diesem Zweck ein nahezu universelles Mittel bereitgestellt. Der kürzliche explosive Anstieg der Anforderungen an die Datenerfassung, -speicherung und -verarbeitung hat jedoch die Fähigkeiten herkömmlicher Erfassungssysteme in vielen Anwendungsbereichen an ihre Grenzen gebracht. Durch eine alternative Sichtweise auf den Signalerfassungsprozess können Ideen aus der sparse Signalverarbeitung und einer ihrer Hauptanwendungsgebiete, Compressed Sensing (CS), dazu beitragen, einige dieser Probleme zu mindern. Basierend auf der Annahme, dass der Informationsgehalt eines Signals oft viel geringer ist als was von der nativen Repräsentation vorgegeben, stellt CS ein alternatives Konzept für die Erfassung und Verarbeitung bereit, das versucht, die Abtastrate unter Beibehaltung des Signalinformationsgehalts zu reduzieren. In dieser Arbeit untersuchen wir einige der Grundlagen des endlichdimensionalen CSFrameworks und seine Verbindung mit Sub-Nyquist Abtastung und Verarbeitung von sparsen analogen Signalen. Obwohl es seit mehr als einem Jahrzehnt ein Schwerpunkt aktiver Forschung ist, gibt es noch erhebliche Lücken beim Verständnis der Auswirkungen von komprimierenden Ansätzen auf die Signalwiedergewinnung und die Verarbeitungsleistung, insbesondere bei rauschbehafteten Umgebungen und in Bezug auf praktische Messaufgaben. In dieser Dissertation untersuchen wir, wie sich die Anwendung eines komprimierenden Messkerns auf die Signal- und Rauschcharakteristiken auf die Signalrückgewinnungsleistung auswirkt. Wir erforschen auch Methoden, um die aktuelle Signal-Sparsity-Order aus den komprimierten Messungen abzuleiten, ohne auf die Nyquist-Raten-Verarbeitung zurückzugreifen, und zeigen den Vorteil, den sie für den Wiederherstellungsprozess bietet. Nachdem gehen wir zu einer speziellen Anwendung, nämlich der Sub-Nyquist-Abtastung und Verarbeitung von sparsen analogen Multibandsignalen. Innerhalb des Sub-Nyquist-Abtastung untersuchen wir drei verschiedene Multiband-Szenarien, die Multiband-Sensing in der spektralen, Winkel und räumlichen-Domäne einbeziehen.Since the advent of the first digital processing units, the importance of digital signal processing has been steadily rising. Today, most signal processing happens in the digital domain, requiring that analog signals be first sampled and digitized before any relevant data can be extracted from them. For decades, conventional uniform sampling that is governed by the Nyquist sampling theorem has provided an almost universal means to this end. The recent explosion of the demands for data acquisition, storage and processing, however, has pushed the capabilities of conventional acquisition systems to their limits in many application areas. By offering an alternative view on the signal acquisition process, ideas from sparse signal processing and one of its main beneficiaries compressed sensing (CS), have the potential to assist alleviating some of these problems. Building on the premise that the signal information rate is often much lower than what is dictated by its native representation, CS provides an alternative acquisition and processing framework that attempts to reduce the sampling rate while preserving the information content of the signal. In this thesis, we explore some of the basic foundations of the finite-dimensional CS framework and its connection to sub-Nyquist sampling and processing of sparse continuous analog signals with application to multiband sensing. Despite being a focus of active research for over a decade, there still remain signi_cant gaps in understanding the implications that compressive approaches have on the signal recovery and processing performance, especially against noisy settings and in relation to practical sampling problems. This dissertation aims at filling some of these gaps. More specifically, we look into the ways the application of a compressive measurement kernel impacts signal and noise characteristics and the relation it has to the signal recovery performance. We also investigate methods to infer the current complexity of the signal scene from the reduced-rate compressive observations without resorting to Nyquist-rate processing and show the advantage this knowledge offers to the recovery process. Having considered some of the universal aspects of compressive systems, we then move to studying a particular application, namely that of sub-Nyquist sampling and processing of sparse analog multiband signals. Within the sub-Nyquist sampling framework, we examine three different multiband scenarios that involve multiband sensing in spectral, angular and spatial domains. For each of them, we provide a sub-Nyquist receiver architecture, develop recovery methods and numerically evaluate their performance

    Contributions to measurement-based dynamic MIMO channel modeling and propagation parameter estimation

    Get PDF
    Multiantenna (MIMO) transceivers are a key technology in emerging broadband wireless communication systems since they facilitate achieving the required high data rates and reliability. In order to develop and study the performance of MIMO systems, advanced channel modeling that captures also the spatial characteristics of the radio wave propagation is required. This thesis introduces several contributions in the area of measurement-based modeling of wireless MIMO propagation channels. Measurement based modeling provides realistic characterization of the space, time and frequency dependency of the physical layer for both MIMO transceiver design and network planning. The focus in this thesis is on modeling and parametric estimation of mobile MIMO radio propagation channels. First, an overview of MIMO channel modeling approaches is given. A hybrid model for characterizing the spatio-temporal structure of measured MIMO channels consisting of a superposition of double-directional, specular-like propagation paths, and a stochastic process describing the diffuse scattering is formulated. State-space modeling approach is introduced in order to capture the dynamic channel properties from mobile channel sounding measurements. Extended Kalman filter (EKF) is employed for the sequential estimation problem and also statistical hypothesis testing for adjusting the model order are introduced. Due to the improved dynamic model of the mobile radio channel, the EKF approach outperforms maximum likelihood (ML) based batch solutions both in terms of lower estimation error as well as computational complexity. Finally, tensor representation for modeling multidimensional MIMO channels is considered and a novel sequential unfolding SVD (SUSVD) tensor decomposition is introduced. The SUSVD is an orthogonal tensor decomposition having several important applications in signal processing. The advantages of applying the SUSVD instead of other well known tensor models such as parallel factorization and Tucker-models, are illustrated using application examples in channel sounding data processing

    Advanced Algebraic Concepts for Efficient Multi-Channel Signal Processing

    Get PDF
    Unsere moderne Gesellschaft ist Zeuge eines fundamentalen Wandels in der Art und Weise wie wir mit Technologie interagieren. Geräte werden zunehmend intelligenter - sie verfügen über mehr und mehr Rechenleistung und häufiger über eigene Kommunikationsschnittstellen. Das beginnt bei einfachen Haushaltsgeräten und reicht über Transportmittel bis zu großen überregionalen Systemen wie etwa dem Stromnetz. Die Erfassung, die Verarbeitung und der Austausch digitaler Informationen gewinnt daher immer mehr an Bedeutung. Die Tatsache, dass ein wachsender Anteil der Geräte heutzutage mobil und deshalb batteriebetrieben ist, begründet den Anspruch, digitale Signalverarbeitungsalgorithmen besonders effizient zu gestalten. Dies kommt auch dem Wunsch nach einer Echtzeitverarbeitung der großen anfallenden Datenmengen zugute. Die vorliegende Arbeit demonstriert Methoden zum Finden effizienter algebraischer Lösungen für eine Vielzahl von Anwendungen mehrkanaliger digitaler Signalverarbeitung. Solche Ansätze liefern nicht immer unbedingt die bestmögliche Lösung, kommen dieser jedoch häufig recht nahe und sind gleichzeitig bedeutend einfacher zu beschreiben und umzusetzen. Die einfache Beschreibungsform ermöglicht eine tiefgehende Analyse ihrer Leistungsfähigkeit, was für den Entwurf eines robusten und zuverlässigen Systems unabdingbar ist. Die Tatsache, dass sie nur gebräuchliche algebraische Hilfsmittel benötigen, erlaubt ihre direkte und zügige Umsetzung und den Test unter realen Bedingungen. Diese Grundidee wird anhand von drei verschiedenen Anwendungsgebieten demonstriert. Zunächst wird ein semi-algebraisches Framework zur Berechnung der kanonisch polyadischen (CP) Zerlegung mehrdimensionaler Signale vorgestellt. Dabei handelt es sich um ein sehr grundlegendes Werkzeug der multilinearen Algebra mit einem breiten Anwendungsspektrum von Mobilkommunikation über Chemie bis zur Bildverarbeitung. Verglichen mit existierenden iterativen Lösungsverfahren bietet das neue Framework die Möglichkeit, den Rechenaufwand und damit die Güte der erzielten Lösung zu steuern. Es ist außerdem weniger anfällig gegen eine schlechte Konditionierung der Ausgangsdaten. Das zweite Gebiet, das in der Arbeit besprochen wird, ist die unterraumbasierte hochauflösende Parameterschätzung für mehrdimensionale Signale, mit Anwendungsgebieten im RADAR, der Modellierung von Wellenausbreitung, oder bildgebenden Verfahren in der Medizin. Es wird gezeigt, dass sich derartige mehrdimensionale Signale mit Tensoren darstellen lassen. Dies erlaubt eine natürlichere Beschreibung und eine bessere Ausnutzung ihrer Struktur als das mit Matrizen möglich ist. Basierend auf dieser Idee entwickeln wir eine tensor-basierte Schätzung des Signalraums, welche genutzt werden kann um beliebige existierende Matrix-basierte Verfahren zu verbessern. Dies wird im Anschluss exemplarisch am Beispiel der ESPRIT-artigen Verfahren gezeigt, für die verbesserte Versionen vorgeschlagen werden, die die mehrdimensionale Struktur der Daten (Tensor-ESPRIT), nichzirkuläre Quellsymbole (NC ESPRIT), sowie beides gleichzeitig (NC Tensor-ESPRIT) ausnutzen. Um die endgültige Schätzgenauigkeit objektiv einschätzen zu können wird dann ein Framework für die analytische Beschreibung der Leistungsfähigkeit beliebiger ESPRIT-artiger Algorithmen diskutiert. Verglichen mit existierenden analytischen Ausdrücken ist unser Ansatz allgemeiner, da keine Annahmen über die statistische Verteilung von Nutzsignal und Rauschen benötigt werden und die Anzahl der zur Verfügung stehenden Schnappschüsse beliebig klein sein kann. Dies führt auf vereinfachte Ausdrücke für den mittleren quadratischen Schätzfehler, die Schlussfolgerungen über die Effizienz der Verfahren unter verschiedenen Bedingungen zulassen. Das dritte Anwendungsgebiet ist der bidirektionale Datenaustausch mit Hilfe von Relay-Stationen. Insbesondere liegt hier der Fokus auf Zwei-Wege-Relaying mit Hilfe von Amplify-and-Forward-Relays mit mehreren Antennen, da dieser Ansatz ein besonders gutes Kosten-Nutzen-Verhältnis verspricht. Es wird gezeigt, dass sich die nötige Kanalkenntnis mit einem einfachen algebraischen Tensor-basierten Schätzverfahren gewinnen lässt. Außerdem werden Verfahren zum Finden einer günstigen Relay-Verstärkungs-Strategie diskutiert. Bestehende Ansätze basieren entweder auf komplexen numerischen Optimierungsverfahren oder auf Ad-Hoc-Ansätzen die keine zufriedenstellende Bitfehlerrate oder Summenrate liefern. Deshalb schlagen wir algebraische Ansätze zum Finden der Relayverstärkungsmatrix vor, die von relevanten Systemmetriken inspiriert sind und doch einfach zu berechnen sind. Wir zeigen das algebraische ANOMAX-Verfahren zum Erreichen einer niedrigen Bitfehlerrate und seine Modifikation RR-ANOMAX zum Erreichen einer hohen Summenrate. Für den Spezialfall, in dem die Endgeräte nur eine Antenne verwenden, leiten wir eine semi-algebraische Lösung zum Finden der Summenraten-optimalen Strategie (RAGES) her. Anhand von numerischen Simulationen wird die Leistungsfähigkeit dieser Verfahren bezüglich Bitfehlerrate und erreichbarer Datenrate bewertet und ihre Effektivität gezeigt.Modern society is undergoing a fundamental change in the way we interact with technology. More and more devices are becoming "smart" by gaining advanced computation capabilities and communication interfaces, from household appliances over transportation systems to large-scale networks like the power grid. Recording, processing, and exchanging digital information is thus becoming increasingly important. As a growing share of devices is nowadays mobile and hence battery-powered, a particular interest in efficient digital signal processing techniques emerges. This thesis contributes to this goal by demonstrating methods for finding efficient algebraic solutions to various applications of multi-channel digital signal processing. These may not always result in the best possible system performance. However, they often come close while being significantly simpler to describe and to implement. The simpler description facilitates a thorough analysis of their performance which is crucial to design robust and reliable systems. The fact that they rely on standard algebraic methods only allows their rapid implementation and test under real-world conditions. We demonstrate this concept in three different application areas. First, we present a semi-algebraic framework to compute the Canonical Polyadic (CP) decompositions of multidimensional signals, a very fundamental tool in multilinear algebra with applications ranging from chemistry over communications to image compression. Compared to state-of-the art iterative solutions, our framework offers a flexible control of the complexity-accuracy trade-off and is less sensitive to badly conditioned data. The second application area is multidimensional subspace-based high-resolution parameter estimation with applications in RADAR, wave propagation modeling, or biomedical imaging. We demonstrate that multidimensional signals can be represented by tensors, providing a convenient description and allowing to exploit the multidimensional structure in a better way than using matrices only. Based on this idea, we introduce the tensor-based subspace estimate which can be applied to enhance existing matrix-based parameter estimation schemes significantly. We demonstrate the enhancements by choosing the family of ESPRIT-type algorithms as an example and introducing enhanced versions that exploit the multidimensional structure (Tensor-ESPRIT), non-circular source amplitudes (NC ESPRIT), and both jointly (NC Tensor-ESPRIT). To objectively judge the resulting estimation accuracy, we derive a framework for the analytical performance assessment of arbitrary ESPRIT-type algorithms by virtue of an asymptotical first order perturbation expansion. Our results are more general than existing analytical results since we do not need any assumptions about the distribution of the desired signal and the noise and we do not require the number of samples to be large. At the end, we obtain simplified expressions for the mean square estimation error that provide insights into efficiency of the methods under various conditions. The third application area is bidirectional relay-assisted communications. Due to its particularly low complexity and its efficient use of the radio resources we choose two-way relaying with a MIMO amplify and forward relay. We demonstrate that the required channel knowledge can be obtained by a simple algebraic tensor-based channel estimation scheme. We also discuss the design of the relay amplification matrix in such a setting. Existing approaches are either based on complicated numerical optimization procedures or on ad-hoc solutions that to not perform well in terms of the bit error rate or the sum-rate. Therefore, we propose algebraic solutions that are inspired by these performance metrics and therefore perform well while being easy to compute. For the MIMO case, we introduce the algebraic norm maximizing (ANOMAX) scheme, which achieves a very low bit error rate, and its extension Rank-Restored ANOMAX (RR-ANOMAX) that achieves a sum-rate close to an upper bound. Moreover, for the special case of single antenna terminals we derive the semi-algebraic RAGES scheme which finds the sum-rate optimal relay amplification matrix based on generalized eigenvectors. Numerical simulations evaluate the resulting system performance in terms of bit error rate and system sum rate which demonstrates the effectiveness of the proposed algebraic solutions
    corecore