10 research outputs found

    Convolutive Blind Source Separation Methods

    Get PDF
    In this chapter, we provide an overview of existing algorithms for blind source separation of convolutive audio mixtures. We provide a taxonomy, wherein many of the existing algorithms can be organized, and we present published results from those algorithms that have been applied to real-world audio separation tasks

    An adaptive stereo basis method for convolutive blind audio source separation

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in Neurocomputing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in PUBLICATION, [71, 10-12, June 2008] DOI:neucom.2007.08.02

    Blind source separation the effects of signal non-stationarity

    Get PDF

    Direct and Residual Subspace Decomposition of Spatial Room Impulse Responses

    Get PDF
    Psychoacoustic experiments have shown that directional properties of the direct sound, salient reflections, and the late reverberation of an acoustic room response can have a distinct influence on the auditory perception of a given room. Spatial room impulse responses (SRIRs) capture those properties and thus are used for direction-dependent room acoustic analysis and virtual acoustic rendering. This work proposes a subspace method that decomposes SRIRs into a direct part, which comprises the direct sound and the salient reflections, and a residual, to facilitate enhanced analysis and rendering methods by providing individual access to these components. The proposed method is based on the generalized singular value decomposition and interprets the residual as noise that is to be separated from the other components of the reverberation. Large generalized singular values are attributed to the direct part, which is then obtained as a low-rank approximation of the SRIR. By advancing from the end of the SRIR toward the beginning while iteratively updating the residual estimate, the method adapts to spatio-temporal variations of the residual. The method is evaluated using a spatio-spectral error measure and simulated SRIRs of different rooms, microphone arrays, and ratios of direct sound to residual energy. The proposed method creates lower errors than existing approaches in all tested scenarios, including a scenario with two simultaneous reflections. A case study with measured SRIRs shows the applicability of the method under real-world acoustic conditions. A reference implementation is provided

    Source Separation for Hearing Aid Applications

    Get PDF

    Underdetermined convolutive source separation using two dimensional non-negative factorization techniques

    Get PDF
    PhD ThesisIn this thesis the underdetermined audio source separation has been considered, that is, estimating the original audio sources from the observed mixture when the number of audio sources is greater than the number of channels. The separation has been carried out using two approaches; the blind audio source separation and the informed audio source separation. The blind audio source separation approach depends on the mixture signal only and it assumes that the separation has been accomplished without any prior information (or as little as possible) about the sources. The informed audio source separation uses the exemplar in addition to the mixture signal to emulate the targeted speech signal to be separated. Both approaches are based on the two dimensional factorization techniques that decompose the signal into two tensors that are convolved in both the temporal and spectral directions. Both approaches are applied on the convolutive mixture and the high-reverberant convolutive mixture which are more realistic than the instantaneous mixture. In this work a novel algorithm based on the nonnegative matrix factor two dimensional deconvolution (NMF2D) with adaptive sparsity has been proposed to separate the audio sources that have been mixed in an underdetermined convolutive mixture. Additionally, a novel Gamma Exponential Process has been proposed for estimating the convolutive parameters and number of components of the NMF2D/ NTF2D, and to initialize the NMF2D parameters. In addition, the effects of different window length have been investigated to determine the best fit model that suit the characteristics of the audio signal. Furthermore, a novel algorithm, namely the fusion K models of full-rank weighted nonnegative tensor factor two dimensional deconvolution (K-wNTF2D) has been proposed. The K-wNTF2D is developed for its ability in modelling both the spectral and temporal changes, and the spatial covariance matrix that addresses the high reverberation problem. Variable sparsity that derived from the Gibbs distribution is optimized under the Itakura-Saito divergence and adapted into the K-wNTF2D model. The tensors of this algorithm have been initialized by a novel initialization method, namely the SVD two-dimensional deconvolution (SVD2D). Finally, two novel informed source separation algorithms, namely, the semi-exemplar based algorithm and the exemplar-based algorithm, have been proposed. These algorithms based on the NMF2D model and the proposed two dimensional nonnegative matrix partial co-factorization (2DNMPCF) model. The idea of incorporating the exemplar is to inform the proposed separation algorithms about the targeted signal to be separated by initializing its parameters and guide the proposed separation algorithms. The adaptive sparsity is derived for both ii of the proposed algorithms. Also, a multistage of the proposed exemplar based algorithm has been proposed in order to further enhance the separation performance. Results have shown that the proposed separation algorithms are very promising, more flexible, and offer an alternative model to the conventional methods

    Multimodal methods for blind source separation of audio sources

    Get PDF
    The enhancement of the performance of frequency domain convolutive blind source separation (FDCBSS) techniques when applied to the problem of separating audio sources recorded in a room environment is the focus of this thesis. This challenging application is termed the cocktail party problem and the ultimate aim would be to build a machine which matches the ability of a human being to solve this task. Human beings exploit both their eyes and their ears in solving this task and hence they adopt a multimodal approach, i.e. they exploit both audio and video modalities. New multimodal methods for blind source separation of audio sources are therefore proposed in this work as a step towards realizing such a machine. The geometry of the room environment is initially exploited to improve the separation performance of a FDCBSS algorithm. The positions of the human speakers are monitored by video cameras and this information is incorporated within the FDCBSS algorithm in the form of constraints added to the underlying cross-power spectral density matrix-based cost function which measures separation performance. [Continues.
    corecore