12 research outputs found

    Extension of Co-Prime Arrays Based on the Fourth-Order Difference Co-Array Concept

    Get PDF
    An effective sparse array extension method for maximizing the number of consecutive lags in the fourth-order difference co-array is proposed, leading to a novel enhanced sparse array structure based on co-prime arrays (CPAs) with significantly increased number of degrees of freedom (DOFs). One method to exploit the increased DOFs based on nonstationary signals is also proposed, with simulation results provided to demonstrate the effectiveness of the proposed structure

    Simplified and enhanced multiple level nested arrays exploiting high order difference co-arrays

    Get PDF
    Based on the high order difference co-array concept, an enhanced four level nested array (E-FL-NA) is first proposed, which optimizes the consecutive lags at the fourth order difference co-array stage. To simplify the formulations for sensor locations for comprehensive illustration and also convenient structure construction, a simplified and enhanced four level nested array (SE-FL-NA) is then proposed, whose performance is compromised but still better than the four level nested array (FL-NA). This simplified structure is further extended to the higher order case with multiple sub-arrays, referred to as simplified and enhanced multiple level nested arrays (SE-ML-NAs), where significantly increased degrees of freedom (DOFs) can be provided and exploited for underdetermined DOA estimation. Simulation results are provided to verify the superior performance of the proposed E-FL-NA, while a higher number of detectable sources is achieved by the SE-ML-NA with a limited number of physical sensors

    Wideband DOA Estimation with Frequency Decomposition via a Unified GS-WSpSF Framework

    Get PDF
    A unified group sparsity based framework for wideband sparse spectrum fitting (GS-WSpSF) is proposed for wideband direction-of-arrival (DOA) estimation, which is capable of handling both uncorrelated and correlated sources. Then, by making four different assumptions on a priori knowledge about the sources, four variants under the proposed framework are formulated as solutions to the underdetermined DOA estimation problem without the need of employing sparse arrays. As verified by simulations, improved estimation performance can be achieved by the wideband methods compared with narrowband ones, and adopting more a priori information leads to better performance in terms of resolution capacity and estimation accuracy

    Extension of Nested Arrays with the Fourth-Order Difference Co-Array Enhancement

    Get PDF
    To reach a higher number of degrees of freedom by exploiting the fourth-order difference co-array concept, an effective structure extension based on two-level nested arrays is proposed. It increases the number of consecutive lags in the fourth-order difference coarray, and a virtual uniform linear array (ULA) with more sensors and a larger aperture is then generated from the proposed structure, leading to a much higher number of distinguishable sources with a higher accuracy. Compressive sensing based approach is applied for direction-of-arrival (DOA) estimation by vectorizing the fourthorder cumulant matrix of the array, assuming non-Gaussian impinging signals

    Underdetermined DOA Estimation Under the Compressive Sensing Framework: A Review

    Get PDF
    Direction of arrival (DOA) estimation from the perspective of sparse signal representation has attracted tremendous attention in past years, where the underlying spatial sparsity reconstruction problem is linked to the compressive sensing (CS) framework. Although this is an area with ongoing intensive research and new methods and results are reported regularly, it is time to have a review about the basic approaches and methods for CS-based DOA estimation, in particular for the underdetermined case. We start from the basic time-domain CSbased formulation for narrowband arrays and then move to the case for recently developed methods for sparse arrays based on the co-array concept. After introducing two specifically designed structures (the two-level nested array and the co-prime array) for optimizing the virtual sensors corresponding to the difference coarray, this CS-based DOA estimation approach is extended to the wideband case by employing the group sparsity concept, where a much larger physical aperture can be achieved by allowing a larger unit inter-element spacing and therefore leading to further improved performance. Finally, a specifically designed ULA structure with associated CS-based underdetermined DOA estimation is presented to exploit the difference co-array concept in the spatio-spectral domain, leading to a significant increase in DOFs. Representative simulation results for typical narrowband and wideband scenarios are provided to demonstrate their performance

    Multi-source parameter estimation and tracking using antenna arrays

    Get PDF
    This thesis is concerned with multi-source parameter estimation and tracking using antenna arrays in wireless communications. Various multi-source parameter estimation and tracking algorithms are presented and evaluated. Firstly, a novel multiple-input multiple-output (MIMO) communication system is proposed for multi-parameter channel estimation. A manifold extender is presented for increasing the degrees of freedom (DoF). The proposed approach utilises the extended manifold vectors together with superresolution subspace type algorithms, to achieve the estimation of delay, direction of departure (DOD) and direction of arrival (DOA) of all the paths of the desired user in the presence of multiple access interference (MAI). Secondly, the MIMO system is extended to a virtual-spatiotemporal system by incorporating the temporal domain of the system towards the objective of further increasing the degrees of freedom. In this system, a multi-parameter es- timation of delay, Doppler frequency, DOD and DOA of the desired user, and a beamformer that suppresses the MAI are presented, by utilising the proposed virtual-spatiotemporal manifold extender and the superresolution subspace type algorithms. Finally, for multi-source tracking, two tracking approaches are proposed based on an arrayed Extended Kalman Filter (arrayed-EKF) and an arrayed Unscented Kalman Filter (arrayed-UKF) using two type of antenna arrays: rigid array and flexible array. If the array is rigid, the proposed approaches employ a spatiotemporal state-space model and a manifold extender to track the source parameters, while if it is flexible the array locations are also tracked simultaneously. Throughout the thesis, computer simulation studies are presented to investigate and evaluate the performance of all the proposed algorithms.Open Acces

    Statistical Nested Sensor Array Signal Processing

    Get PDF
    Source number detection and direction-of-arrival (DOA) estimation are two major applications of sensor arrays. Both applications are often confined to the use of uniform linear arrays (ULAs), which is expensive and difficult to yield wide aperture. Besides, a ULA with N scalar sensors can resolve at most N โˆ’ 1 sources. On the other hand, a systematic approach was recently proposed to achieve O(N 2 ) degrees of freedom (DOFs) using O(N) sensors based on a nested array, which is obtained by combining two or more ULAs with successively increased spacing. This dissertation will focus on a fundamental study of statistical signal processing of nested arrays. Five important topics are discussed, extending the existing nested-array strategies to more practical scenarios. Novel signal models and algorithms are proposed. First, based on the linear nested array, we consider the problem for wideband Gaussian sources. To employ the nested array to the wideband case, we propose effective strategies to apply nested-array processing to each frequency component, and combine all the spectral information of various frequencies to conduct the detection and estimation. We then consider the practical scenario with distributed sources, which considers the spreading phenomenon of sources. Next, we investigate the self-calibration problem for perturbed nested arrays, for which existing works require certain modeling assumptions, for example, an exactly known array geometry, including the sensor gain and phase. We propose corresponding robust algorithms to estimate both the model errors and the DOAs. The partial Toeplitz structure of the covariance matrix is employed to estimate the gain errors, and the sparse total least squares is used to deal with the phase error issue. We further propose a new class of nested vector-sensor arrays which is capable of significantly increasing the DOFs. This is not a simple extension of the nested scalar-sensor array. Both the signal model and the signal processing strategies are developed in the multidimensional sense. Based on the analytical results, we consider two main applications: electromagnetic (EM) vector sensors and acoustic vector sensors. Last but not least, in order to make full use of the available limited valuable data, we propose a novel strategy, which is inspired by the jackknifing resampling method. Exploiting numerous iterations of subsets of the whole data set, this strategy greatly improves the results of the existing source number detection and DOA estimation methods

    Sensor Array Processing with Manifold Uncertainty

    Get PDF
    <p>The spatial spectrum, also known as a field directionality map, is a description of the spatial distribution of energy in a wavefield. By sampling the wavefield at discrete locations in space, an estimate of the spatial spectrum can be derived using basic wave propagation models. The observable data space corresponding to physically realizable source locations for a given array configuration is referred to as the array manifold. In this thesis, array manifold ambiguities for linear arrays of omni-directional sensors in non-dispersive fields are considered. </p><p>First, the problem of underwater a hydrophone array towed behind a maneuvering platform is considered. The array consists of many hydrophones mounted to a flexible cable that is pulled behind a ship. The towed cable will bend or distort as the ship performs maneuvers. The motion of the cable through the turn can be used to resolve ambiguities that are inherent to nominally linear arrays. The first significant contribution is a method to estimate the spatial spectrum using a time-varying array shape in a dynamic field and broadband temporal data. Knowledge of the temporal spectral shape is shown to enhance detection performance. The field is approximated as a sum of uncorrelated planewaves located at uniform locations in angle, forming a gridded map on which a maximum likelihood estimate for broadband source power is derived. Uniform linear arrays also suffer from spatial aliasing when the inter-element spacing exceeds a half-wavelength. Broadband temporal knowledge is shown to significantly reduce aliasing and thus, in simulation, enhance target detection in interference dominated environments. </p><p>As an extension, the problem of towed array shape estimation is considered when the number and location of sources are unknown. A maximum likelihood estimate of the array shape using the field directionality map is derived. An acoustic-based array shape estimate that exploits the full 360โˆ˜^\circ field via field directionality mapping is the second significant contribution. Towed hydrophone arrays have heading sensors in order to estimate array shape, but these sensors can malfunction during sharp turns. An array shape model is described that allows the heading sensor data to be statistically fused with heading sensor. The third significant contribution is method to exploit dynamical motion models for sharp turns for a robust array shape estimate that combines acoustic and heading data. The proposed array shape model works well for both acoustic and heading data and is valid for arbitrary continuous array shapes.</p><p>Finally, the problem of array manifold ambiguities for static under-sampled linear arrays is considered. Under-sampled arrays are non-uniformly sampled with average spacing greater than a half-wavelength. While spatial aliasing only occurs in uniformly sampled arrays with spacing greater than a half-wavelength, under-sampled arrays have increased spatial resolution at the cost of high sidelobes compared to half-wavelength sampled arrays with the same number of sensors. Additionally, non-uniformly sampled arrays suffer from rank deficient array manifolds that cause traditional subspace based techniques to fail. A class of fully agumentable arrays, minimally redundant linear arrays, is considered where the received data statistics of a uniformly spaced array of the same length can be reconstructed in wide sense stationary fields at the cost of increased variance. The forth significant contribution is a reduced rank processing method for fully augmentable arrays to reduce the variance from augmentation with limited snapshots. Array gain for reduced rank adaptive processing with diagonal loading for snapshot deficient scenarios is analytically derived using asymptotic results from random matrix theory for a set ratio of sensors to snapshots. Additionally, the problem of near-field sources is considered and a method to reduce the variance from augmentation is proposed. In simulation, these methods result in significant average and median array gains with limited snapshots.</p>Dissertatio
    corecore